Illuminance and angle RGM ff7e22 selbsterklärend iVBORw0KGgoAAAANSUhEUgAAAMgAAADICAYAAACtWK6eAAAgAElEQVR4Xu2dB5RkVbWG/5ocyGkIQ4YhDVmSKDmDCAqiEswYEfUpqAiYnyIGfA95iglQkYySBBGQKDlJkBxmiMNEmDxdb307VBXDDPR0d8W+Z61aPd1TVffec84+O/3736XyCWuVVYxiBooZWOAMlAoBKXZGMQMLn4FCQIrdUczAm8xAISDF9ihmoBCQYg8UM9CzGSg0SM/mrfhUP5mBQkD6yUIXj9mzGSgEpGfzVnyqn8xAISDNXuiBQ6QBA6p3YVmpLmneXKnc1ey76/fXLwSkmVtgwEBp+yOlFddXedAwafpkacgIlZ69S7rnAmnm1GbeXXFtSYWANHMboD12+7K03Foqd82TXntFGr6kSg/9XXrwCmnurGbeXXHtQkCavAeGjJR2+aK0wjoshWuQEUtJLzwk3XWuNOGJJt9gcflCgzRzD5QGSrt/RVpxA2ngUKlUkgYPk16dIN16hvTYDZIKqFxTl6jAYjVx+vE73vUdaelVpYGDJUyu0gBpzkzpgUul2/9UmFlNXB4uXWiQZi7AsMWld31XWmq0C8bAQRJahejV8w9IV35fmjGlmXfY769dCEgzt8DI5aT9vyMtuYpULktEtQYM8p8IxvlfkCaPa+Yd9vtrFwLSzC2wzBrS3sdJS6woEcUiHzJwmPnrmjvHNcgTNzXzDvv9tZsrICOXkUZv4eHN8ff2v8TYsmtIe31DWnwFqYukYFkaunh1Hh78m3TNT/r9Jm3mBDReQIjUrLihxf/LS64sYWZMn6TSzadLD11l/+43Y7Hlpf2+7QKCkz53pjRsKY9m4YcQ9j3jMGnenH4zJa32oI0VEJzQvU9UeeWNpZHLSkMX880wd7Y05XmVnrhRuvdi6eVHW22e6nM/Q0dK7/qetMzq7nsgIGgQTC18ktkzpDOPKDLq9Zn9bn1rYwWEW1pzO2mVjVXe8gMSiTIcUjbD9FdUwsR4+g7p6h/1j+jN8KWld39fWmIlFwoOCoQGJ4SDA7/kzA9Jr77crcUs3tT3M9B4ARkwUOU9vy6tv6c7o5yc/GP2qyp1zfG82HP3S1f9UHptQt8/cSt94+KjpP2/5yYWh0R5njR4uN8hYV+E5I8flyY+00p33a/upfECssIYaafPq7z0aLe358wwgB7o1VJ5rgsL4/l/S5eeIM16tXMXZLEVpAN+IC0xyhOCFuIlYRhald//8WPHZSFAxWj4DDReQBCAsftKb3u/ysOXMrPCTCtOTjO3uuL0HCg9cq109Umd7aQe/HOHmsyY7HPA+TBouNQ11xOHz9wtXfJ1N7+K0fAZaIKASBqxtGkR4ayjPXBOOSAHDXUhSRuc6bj2p9IDVzR8Yhp2wX1OkNZ+h0fv8MnQFENHeNiXrPrEp6Xzjy4cdRaEoA57Z+Y0n48G1Ms0R0B42NGbSe/8tISZgUlhiTJMDJJlQ/zhERYmA1MLv6TTBj7GbsdIY3byoIRpkAF+aFhmfZAFL3T+F6VJ/dgPIQS+/LrS6E38IJnygjT5WQ+D11lImicgbISN9pa2OMRqIEyFmBYJ0J45qkRzBkovPSJdfKybIR01StJOR0nr725BCjsY0KK8GPzOM1/0FZ+D/jjQqtscIY1a3wViynhp4lPSlOekyc9JMybV1T9rnoCw2GyEzQ+SNn6XmxfzZvkpyukJ0hWJ4RTFHv/PNdI/Tu48f2SHz0rr7Vo9CYcMd8FgJCbr0uOl5/7d/8SDA/Ltn5A2f69bGJPHS688YTkz+zcvBMUAnfUJYjRXQHITHPgjaaWx0szJrjEwMdAw+CKoV9Qo0a6rT5Yeva6zNgpm5ro7+oEwb3Y87zw/FKhLnzFVuulX0rh7Ouu5u/M0ozd3tDOoZ9AERDQnPesATgQj/z31xbr5aM0XECaKE2LT97gTNnu6CwiaY/BQ1yYICQLCKXrRMXU7LbqzZn3+nrH7uQYxTTnHT0pebAiEZNZrHuYF/t6fxhrbSHseV5M4ldfJMB8ISL6mvSRNGlc39EVrCAjh3j2+Ko1az09RhAKTizAnZgYmBxuGUOedZ0t3ntM5phZ5ofX3cH+LMWe6a07yIiQO2RRP3+aboL+MxZaTDjrFcXrsAQ7I2a/5vGBNgCxAa0x70TXJK09JT95Sl9lpDQHhwVffStrmQ9JSK8eDlsJhr9EibBgE6PrTpPsv6QxNgtZce4dKftQ0KAcEz4mJheZ85cnYIHXZA631pfigADgBtA4aEtbDTL9HNCvzwaHJz4nPusOOhkVI6jBaREDkzjn2+OpbeqKMyWFCqNFmWDkq/yg5PP6K7wREvj7OWR3meuFfudQqAXNnA8wK/2OOa0lebIY6hzMb+rwLuxhBm20/LG2yvwdwWHM0KNrVDovp7qOiUThAMK+o27/rz/7/dRitIyA8HAmz7T4iDVsy4CeRPcaBxR7H7GKgSYiF/+VYj2S0/QhtyYGAIJjMd4DgL8q6IASEcwGxcjgSpMGk5idrTzKZfyM4OOu8MLEu/440a9qiXGmR3ttaAoIW2eULHtHi34Q8MTnAJ5EfsagWNunQcNrvl674dv9A/i7Ssrbhm/HFAG5SBiGEghoYfI4IWFjieJDvB/wztAdh/zofkK0lIKzrcmu5w44WIYrFZKFOERbUKwMbFAHiFLnrHOmW3/e/E7cNZWCht0zJ8YEnSUut6toC7WnsLhDnlf1vrL0Fama6UPz9pIaUAbSegDAxY3aWtj5cGraEq1QEBBWMTYoGwd7EN8GZBRJ/5X/3zzxBJwgJ5tRex0trbe9aw9ATHIqEubvczOqaHWHwec4Z9q/fSU/f3pCnbz0Bycfe/VhplU1cSBiGbh0c9DhZnrqkm1ok0yiyIhxajPaZASyBd37GnfKEGoHFQzgwqebNcyshzWt8DqKXD11ZV3hJ7QS2roCAvQHpioOOFiGaYWE/ciODYgJTk3S5TXrZidLLj7XPBunvd7ryWGnvExyhawVjyWZPmHuuZ8cxpVlzisb+8w8XEDPDGjNaV0B4/g33krY+zMGM1g5gnoeACffiqDNR/A0nHlOLbPONv3Q1XIwWnoGStMK60vafcFS3MbpE9I71NO2BWR0hXSAlcBU/fmPDE8StLSBojL1P9MkEj5OQcE4UAzSGf0LIl9zI1OelJ26RnvpXC2+O4tYsAPP2j0kb7uHR7CwvRigy74FwoD2mjJPuvkh64LKm5IJaW0DYS5haex3nUSycdLNJMbtAvOKkUx8QwDXMLEp1YUcvRuvOAHxg7/5vacSyVaec0C3+JMJiJvQ8N5vvvkB6+KqG+RzzT1rrC4iZWtSNHOxaxCIcoF6jVgJMDmE/tAeaZMLjnkBqxZH8u5yM4Ix4Hp6D6A2b49VXpOkTqyRyrfgMvb0nnnmHzzmCOZHahhYAg0YiMBAUU1+Qbvmt9NStvb1irz7fHgKCut3sPdLYfTybTiiQ4hmEgolEICieoZiG31umfrskDV9CWm4dh9AYSTVw/uHumFodPijeedLcGdK0l71ijuIozESeqdMgJiCXKbc2CwBnsuyHAwPLwBC706R/XybdfV7TNEdKVXsISN4thVXAw9EgOOK8gD2noKBNmt2VCb+IrDBmBAKx0oYSDIr83cwH6HwoMSbAQEIsULw8o8FMyu5rEcFB2J+8WXrmTi89bvfB80O1OnrTmA+4v7r8gLBI5Qx/7of/Lt17kWfNmzzaS0CYrJU3kdbb2X0RBAIhQXOgRZqiOUq+6bGnN91fWnYtp/FJqIwQhoDwm0AgIMF5hYNqIUuSoIESyA2BsCDss2dKLzwo3XO+ByIseZYZ5nlN3j7dvDymFANTCqzdBnt6fssOCSAkg11rEIl8+Grp35f7IdgCo/0EhEkDmgAkhdOGTcOrGcIB8Rt19cus5toC6LrZ1RR5DQm2li43HQxoF3iycpfK/D54hCMCSJihVdAmCdSzvAACFSgaNtOc6SpxMJATgEMMk4w6CYISMFLi1LbIxnrd3matVt3CazbImG99qCcBbQAlCYf8voud6onfW2S0p4A0c/LYzAgDtjSQGAs5J2VRMLKw0bGlU1hCOMpWJTkySCrCtKqxsKoI3vjj/GRxBtyDYA9TLNjgkyKJ+8Ik4dB44G9euw1lEIlTNE6zCbDhQkOI33Gkaw+IA/OeEOxHr5ceRHM0LgnYnW1UCEh3Zinfgy+x3UclMsBsdnh0sySYDZtwdd4fzCRlAJfDl4nyYXBG/Ce+CD/5BcQqEhbw9hQKA+gFq0smzax/+hyV2ET8X1Zb5kmcgpO91rmf6VMCGv6C9LfvNa8hz6gx/txrbusRLCMIHOhmFSbVo9c23SFf0FYoBOStBISNCHcXWf0xOzrKGPOJzZmQB05CY4Wk8MsLfcqYTkMWq4nWBI1RxccILl4a5RDBwrdIVskUFjM1gtmFz5nZRjJthkr4LEZsEcNCyNAGcW9RqpyClz/5PvjFgGwQJYJSqFHmDIfJEitLmx0oLbe23zt+I5rj0WtaTnNUprVo4vkmEsIiYkptc7hvJASFDWsmCzgwMvlz3ffIE1FdKuN0YoaZdgnnO7FGvB96oxlTVEKwbGPDBRa+S0K9K1ohdIv5J0ODqjUxS6FFUlCIAqV2MQwT1675/iwdMM1U8jDybWe6sMycUv8TnDJaAKhrbC29+B/vB2Olsq1bHFZokIXJB8QBWx0urbq5U4FWNlcks5L90Zxrh0uYj4GG4bTMTWv15SEQGbEyx5yGnaEBMtRrjXOq/N1vvLUg16sITzjypiEw8cLM43rm/4ZWQmC5ZoaaawMBloeYKT12vVO8PnJdFCu9lWrt4f/jpBNUoc6+2SH5bjxCISBvmKSStNJG7kzSloDNhQCkGZX0oOl7sDGh3+bvRKXY+LYBS567mD5RJTZnJgUrZlGcmhXhCB6wyv2EMGQdfsLBK7+bBFSl6XUJxYCKV0CAXe6HWLAA4Qw4x4LMsfH3STf/1iNOxiTSv0chIPOvPybAjkd5Brw0SBoCoVtEViyeHyBJPkfFG/1OTGNEmJbPTHvB4volGuNgfrEhjYw6ciAW1k3nvOKUuIljjn5NeDfDvKk1EqtUiX6F49+VcPFwfk0QQwgzeGDmXZJARHJuAD4LIWcEHKQ0JuQc55n60yc7v0fLW8h/ISC1EwRpxPZHxmYJM8iq3OLETYc5w5OhTcqYCnA1cfrSbxEYCabZsmtWGSKNtT5O/cyYV6JXudvDZFrYopmw1ORHKiz4kawkKWmZ+uCPsu8JQUxNZdE2TK+o9TaYR0bECEPDBYBJyQEwQ7rjHOciA3LeD0chILnohB93/JxHgozZkbzCjDe2ZKAm2lrHDXKAHVEloBF3n++EA0RoIMBbfm2JNs8kExEsGAGtUm5edNaKSFiaSekvpJaxvZ2CM1/OBMVgWgjBRfDQPOFvZOQLU4ocTaWdG1lrImGB/cIfMkb9YNa3+5vldTZcDjAlPkuyPF53ipe69rNGPoWAsBFX31ra4TOOrsVfMDjHTPcp2FBZI50RJzYXSTlgEbxefsTfYxn+tT3LzwsNgrNvtfSDq73QczPn5mVDYiIZver90msTq6Ycwlgx0+Z6V67laPqJb4TGCM2U+RVTUmGi8f1s8Gx1l/0gEWoENTp7Wfadv2V9TZKzIWTGCxDMllTzXf6ttnCu+0rZFQJCK+p9TvTTnw1jpNFzouYkNjUbmg3OBmMjUXPyz1Od1a92gNJdejUXjtQeaBJr8xwkaIRTqV8hyw0hNfX0bNCXH3ehXJSB8G3ybgniuSUhn1ssfqLh6JSbiUmI1xAKniM4p4zw4mV/ZtM2Q7wFg/WMDI1n5tw8Rx7jk83rksbdJf35M3Uji16Ux2/Ee/u3gAAq3Pfb0shlfHPZydpV00gzGP2soQ3Ob8kjPPdcGPULC1giNhNCsvSqjtEC1UsEiYw2VXH4KvxejwQdJz2mEfeLgEIKvtrbqnUXFXPOISs2EHpjkZ8UzYwwwQJVjHBwr/zE9ELQOUDG3yv94WP9QpP0XwEBkr77VyRaMRur/GsRogVYGCFWNIn1K5nn/sgNp3kW+s1IA9hwQFLofY6AIAgkxJrVjJTOTBvsLq27k7TcmqEhQrDNvwhBwUSkFgUhw6xCAzEw/WZNdWHA3OMA4HMUMtEargUg6fXUJP1TQFjo9/2P+xtDF6+2XEAYiFpZae8090nmRsacDlfdrW7DHEPwAA4uqtlUz9WG/GKHz6q80T4qIQQJeMSUQgDS6SdihcnJ3GSgAFgKGhb0AFrKBKMknXWE9PyD9bzrpn53/xMQnOi9vi4NXcIdcCJRCEw20ASSTkQnM92c/Ff9d8OIyhqyGzgIKFoCRrPuztLiy0dfEvwv8F9B2IYGXYy68YiUkfjMtt0gBgIhYGbnnX/uvOpHjoB+hcVCI+zzTWnpVYI2CNuazDdmFL7HsDjxIzuHkFz7M8cqdeogsAA31QZ7VMt/k1WeZ+YAQZsk7Sta0TjK0CTLuOZBY0IFeu/FHZd97z8CguO6y5ekVTb2xU48UpLQWQs0okicluGQ3362dMefml9L0QjhhD1m56O9oCn7k5jZVXJzcySROCJj0ekJkwsh4dCxvMwA6YmbvANY1pg34r7rfI3+ISDY1tt+yLvJJi7KYEyRgOMENKr9QLky6cT8b/xVa1bo1XNT0MQIQTGyaPIjM4NUYrY76JXy2dleO8/c4qsw0MZP3ea97UHrdsDoHwLytg94viBpLLGz8TXMz4hkWgW2Iemu86SbT+93WWPfzyXvOrzft6o9OhASEpPkSawepiZDDzIX8xQNTDQQ7cFhc+qeboq1+eh8AaEWepcvem7AQrYBCeffsR8qtR1sDiAj8DF1wOL2eG+iPbZ8n7Trl6vdnJiP7NFBKDuLsrgIgQyEiFwJwM1EGpz9KenFh3t8G63wwc4WEJqDWjh3RHXhiOFjEhgHLLUac7zeg01BPQQRq2L4DNB5mF4tOPLZLxFByXoXq4OhenGAh32t2dFA1ySYZ889IF34pbamLOpsAUFz0E6Y+L/R6CAMi0UiEOzTrIj1y2Hdf/i4l6EWw2cALUFY/P2/cCojhMQoQoNp37Bb5I2iLQX/Z9SwAD5Dkzz/kHTeUW0LTelcASGLfcBJftqx0JYJRjgIUgW31DBKZeV0nxd+2avcivHGGYA8nJ7lmKsM8h8gC7IdHslVfBTrPjvTQ8PWNi8Kxy77pvTA5W05s50pIERWDvihtPw6DpsgwUX0yuq+I7bP75Y5HiBd9UPpwb+15QI27KaZu32/5cEOa08A2UTU5ptJRfFYkEWgmcmXoLmt1mSAdPYnnSGyzUZnCgh8VbSUzjpsTjVr0hJ9J1hY/BJ+xyG/4+w2W7Ym3u7bPijtdJSbpiYkEEUAnQemE/UlHDxEt4gQIiTguSY8Kp310bYDOHaegGAXf+CXVYJoTjJqKAaj7gc66bUxHcph62Cs+nPEqieyNmoD6ZBTvdaFYEeF5SWihNmNGFg/2sUiW/M86XrNz3pyxaZ9pvMEhI5UWxxSTfoRqbI+h6VYSFonDHaz6w8fLZzynm69lTeW3n9adP+izp1cCSiErH6MGhQQwgA3s33er97TVr5eZwkIp9VBpzjADi1BPN58j9AeBo+IgqE7z5Fu+lVPt0fxuZyBT1/mtS+Zccc5N6YXq+/1oiwjhBjm1El3/FG69pS2mb/OEhBYRA6NDDiLguNI5hebGDxRLY/tWR/xqr5i9G4G8ElAR5P3mB2s85lpzzp70NFJMYTw/HSnhjbi7M0DdpaA0HsC1r6k58ny0qzvsCjLIOm2s9w5L0bfzMCBP/KWBkmSnb3Os4KRHBNOvWkRORcvte0tzKiYE9M5AgKhNH3vjBUk6heMYDrwQfgi/E5Tmt9/sD4lr32z3drvW4DxfOgs76RlBHWRa0pqVtYEHBdaZsQyHvX63QekSc+0/LN2joDs+l/ejiBzGyQDMbMgG6D3H4vF/+F7/PN/W35h2u4GtzxE2vt4d9bRJEStkhEGd8TyJNFIBwG6/U9tsQ6dIyAH/4+05Eqe78DfAIdlUZUBAaQLOMSfjvSOTe06OK3JaGPfT6Fx6XNuUjar5r12Hj99qZNFgOhlDawf44goGUgmSZC/Q/1Tl3zD6/VbeHSGgCAIHznbtUXSd5IIZHFYKCNtLkkvPCz9+VPtaV4ZgnawtO4OphnLG+ypEkRusDlyWr8ZkUSjNiDEEAf/vJppB7xoOK0QDnIm1hsl+qJAmE0eqoVHZwgIjIiYV2RtiZhY3QdYoKGe5yAPgur/y7FtCXew59j6cGntqPaDjwtb/r6/Ss/c0TpAQKoLP3qO83RZ517Mrdl+UAEUNeK6YFLB/GKtfnOwF1616Gh/AcHx/uCvPKvLQgCiSzI0nEKzhQd7SPfPn27Pmmn4qHb+vJsv1p9krmtGNCLZ6VZCII/ZRXrvT/0+MQMBLlrQJBK1WZFofFxzPCdCu+cWHe0vIDSqOeR//XTCrOLUIvdh8HaKeOjHXZaeuMVt3kb1HUdwafCZ9KCYfv+5umenPaTaWx1aLXnNsDVogCu/5009W2lQg7POOz2Ki+mX64DGSAExKta5ziJ/5odb6e5fdy91FpAa1nBzzAZUCZ/7KgYO6TSsHIysT8CkSqcVEB2b8/pfODVNvQcCu84OEmW+hJhfB72Y40ICSwo4sG4RQZekLQ6Sxr7L8WUG2QgaU5zhv37DG3a20sDcJWiSbZ6N9pRIVjBX5pzYswyWTtmlZwdHA565bwSEh1xqVWnZ1aUVN/D2Y9ijFM3kglo32LLbmxMelx79pxf497ZtMSfV7sdWWylzHU7v/N7UKqfuXX8k6SqbSvt+M8img8c3GQp59uzwhB3+5G3S5d98awYQQtM0Dl1/1+jfES3VshoSuh3YRFppsAZHX+PcY9nBirC7MeaHFrEwfJQgUMVJqXMLjp4LCA+LABBaXX0babUt3QQYsVRgnxK0Fv0q0B7ZqYm+dC894kzmCElvbOjdvixhgmTW3LK1cW1OMPwRoNen7Vff6V99K4lMvnW+zR4csKzXtDCodKYNIZ48TrrkeJ+LhQ2EHeZ5DgLwZUaQEI068a9ABdx9QWsxOPIsFFhtcbA/ldWzQ5QxJJhQom7ECLbLXkx15ffruz49/PZFFxAo/mHjW2s7ZzHPPhV5A0a9X4PotCZH0SqMv+OY4TBDC/PSf6QXH/GMak/6eHPtj53nGsPwP6qaNRZSLLkKp1Lw94f2cIq68TG05nt/EiYefTjm+hNDSJcNPjOig2ajV3o244E0+owjFt5EE82819ectd38p2jmCSsLkaH7LpZu/2Nr5EFqp4qD6uhrI+dR8kw6Ak5wAcE2kzsI+jgoz/lsNya68W9ZdAGBlHnTAyXKMBEWHprFyu6q2dQyOyFlP7zszQf8+aVH3W6myT3/5iTtCdv5mts5UA7tkZ/H/zBho8PsUD+5rj/VM+j1GGio9/2vk1Unxy3dZa2gaG5QC0WPwzSx2CS8N7FJnLD3/WXBmWUwTtt9pFrjzSGD5mbwnJy+N/6yZwdMPeYjv5ND6/DfSytt6IeoQVAwOwn9UtNOTU5AgmA+IYHbgqN7AsLmZgOM3UcavXmQr0GjExnR2o6ulbZiC3haTkAEZPJ4b//74kMuIPTL7pbDOt93jt3PzQ+0hLVUpoKNTHrggfA/qJem3vzp2+sz/USX3v7xauEQpyL5GDQFAkrBljGpUP9OyDkcU7tHNFxE2RAmyLHNLwk+KZ5rj2OlVWLOsd8RSAQkO8QiINf9vD7P1ptvRSgoXCPrn7XqmdA0Jn067wb8h1zJKTv35mp1+2z3BIQHRMWPGuPdmKj1xtauqMn52oWZiRUshZWurGRT50lTXpAmPCZNQIM87j8hTejJ2OcEaY1t/T7YVJhZhHjZfKm5uOZvP+Agxb4eaNAPnVntQ8h1CU5k7oVMsnWqGu75mZwzDgOy/kkGnZ1zEXJMz3M+43dKQ9GdjpaWoC9HtJOGeMICHtErnUY+9/+1r5+s99/HnqGgiv4k2YOEw8pYUWb4gYiwc7iyB878UO+vWYdv6J6AoD3WfLtHqdgU2dLYiJ+HRh+/YCmswAqwwqNra/5kA0wa5yYVLxOSx3pmP3Pdd39fov9FInYtajbMFyCFlETV6QfVJ0EITed2xPCj3iRhFdwbm58gQYZ6jYeLvAA9R9gYJZ9HNA3vxYHlc7wHbXfxV5zwbu13+nvRMOacBz8uJzD14Bd9pTVpPhGKQ34hEbzIe0Y4eKFBEHDrBRmdg3/yzjps795/ZfcEBFt5nR3dKadlmYVwg6kwzYRK37s44Qw7VMPAZ00vZ7pZxSmJ9gAyganVk4bymDHUIdCsBmAi3wGNT1L8MDecTnz/GYf3fqbm/wae+8N/9CadWZCVPchnkT2OvMycGSoDCxk4RCXMrcwFZP9Dg1/IndhsIFouq/zqBJVmQxq9nEd+7FBKKH90hgKoeN7RvYsC9v3MVL9x7284+VwKSPZCTGgJAm9Rv5L04+3qeSc9/u7uCQhfzybELGARrSlM2Nq2KQJjQ1SFMK+ddMGLRMRmOIX7i/tmenWCaw+EY8JT0tTneuZ/mICc7BATHHPMGgQXrYY5Y3H2IdL4+51ypq8HpuYBP3CBxOm2pppxEWuCGSC9mVNVHrakSmwSaxWAz4FA0Jck/AkLCxP98h7nZfv7CBOMEv4ZApiAy2xDwN+eukWCc6onAY6+no8Ffd/OX3DScIYZFOCzZjtJX9av00KB/zt520bc0SJfo/sCsshfvYAPsMhoIzYVuY/eLCwC8p4fuwbJaBD+B8KZBMpE1yY8WR8NsuNR3gPQioFei0KtEAI2u2W7Z7jv868zpK0+KNH2LSmHDKw37fVON58rDVCZQEPmcyY+rVI5omHWYDN8Oa57yXGeR2rVgQmKmZj+UtIuTX2xelAgIGjjHxUC0rfLiIAQXkVjQQ7ACU2jl+lLxs8AACAASURBVATB0U0Wn+S2P0o3/KJvr8237f899w9wNs3nCRI6CxYMdnMSLUEij0gTvsgW73Oh4v1QEREOxhxDWNCwXfNUJrJjXWchuaOZpqzBppln5qPAPTXI255d9OXWpiza/khph09X8zfZc33aC1UiDdaRuSs0SB/vUQIHoHiTG5aNagIS2Vn67BF5A8Zw70V9fHF5eS8ZfCNPm11tn5wJT3NIZ0o3/dobf+YgLEw3JwQi+5/jgA8epjJCY35bPEOGz9Eas6aqhDOf9vzVJ7U+G+SeX5M2Cy3L8+OD8KwICMLOIYAJzgFxcrv7IH2/xXr3jbRX/uDpbrJgViEgOMOW2S+5aQUdzV+/Jj18de+utaBPE2JebzepiyYzmFS0T47CJXPEyR6/5qyN/7709d9A6HOPY7w2Gx8KswphQeOZP2fwAzfca4Vk5lSVcOapJDz3c55TatXBc3CAwZ+FxjPtwVzhg0z05HL2a+FnYWL18Uouu6Z06K/dXMHexxxBg3Aqccq+9JgX7lx2Yn1OWrowbfYeX3C0hiGJZ/tD0gsdfwgBefYeidN+/mFC8lVLlpVHLu9IXeOxDT8j0c7zY7lmTFbpqh/URyv25RLxHEf8Xlp+jAs9/hVCQq4I05PnsuDKXE+mnv7evrx6n31XY530Prttec/vQ38TLONhrxMSTaIAkpHwZF3xnfowi5MXevf3XDhMQKIBKBuDE5INT8RpznSVrzpJpWfnI24eOlLl/b4jUWBkWoLEakR7LJwbf0scmxUguVYpAZ257czW7rvBQUV14dKjo51bwH+YGwtGlKr8vkQ06wI1CeJsY7qJF9deBNxfGwvIWi4g6RTjvI5Ag3BadXkYmZwN/Ev1YG4nyvTx8yLZB8wlchTcR3ZYws+YPknlOTNVevImadx9zvpIuBsIxmLLqUyVINomNUZCdaywKNAI+Td+TntJpSHDXEs9eat0zU+iZ3lfnj598F0GVrwuKGAHhFAMCFhR9DPkPazVw3+X/v7D7l00+0jyuYUNtDmwqGXWkqjGZL6SXdPMvFmesH78Bum5f78pErr9BcRyC2HjIiAQAnBCkGvBSSdP8NCV3Zv8RX0XNKeA8TJ8iUBY0nOARZ4qUAruB7Mis+kGpCRJtpjZ4uRJ7L3G3QWAD3kJHq80saxCcpZK+B1WxjrAywswW15+wjdi+mL8jetTc0OgYPQWHlIGFMiGIIBR78pKTOCPneMCYOgKfg5wFpYkt0brIiSgkW847c1nH3AszXzw2TDJxlNwNs/NanxNQui8B7ON70wYi6nlVM3Ma7RuwEelmhEkx7N3eTh+AXPS3gKCk564JzYhTjpzQaLw1RdrNEidBIQsMWBJ0xpR75CbHIGwCBv5EISDgqEoGrM8CUIN9GS2aZAyC2+wFEbNolaAoPNUSpYQPoupMulpbwrEZsjWAxXo/0C/Bvfw0sMeFmZDvPioNPFJ953qOUB873X8609n7gegqrXZDlI/DocbfyHd/BZMl5RXkFexPu2zVF55rEpWOgBBRyRfK89DcCMOGptOfo8aFObT5uRRnxd81USXL8D0al8B4YQCDMeJm22cOVGx32dM9ROUhNsj17gfUo/BPVAHYg1BARPC4BFU/1zPNjRON2HbedXWyrkQ3GsF9t2l8uKUDwRFURaYIVhRPlyyasnI0KfDS5AiC5KSHMG0TkbA3CyzqB4axGA+j9UHm1Y7x/t+W9p4X29zl3Q/CEYiA7hXNC4a4KwPS+PufvMVYo4PPqWC5SuPfZejE5ivjPwlo6Np4NBYicmrNWFZJyBIzAMvapIwyRdAndS+AoIwHPQzN6PypES9Iixk6S1SEhCYelYT0nsdVkdrQ4ZWIKcRTS+5vsHd0RgBvcnFs5MtQtL5mVJJZSA9FfhOJCFfm6ASWoXn4wQkmWglt8BTiAxFEZI58iEYdnCEsE1+zk9LNkIWqZFIrec4+h9ecpsYvayVYT5SyyEgJAp//V7H5r3VIGqIlbDcWiqvuqVKsDXaxqcMOTREmqfZzbjynREEQdtwQFFEh1bl0ECDTBm/QGRH+woIGwmwIqd4Om6cJpzgCIgRKc+WFhslnbaPY8DqMbgm0ahVN69OMKe6+RRdUcwVkRM2t2XH8UEGB2w9LCrzXVwIymwcw5RNdzwWGyEXls8lYz3Pk7X+JnDh1OdzJv4J+xo2SWiCeAEYpQy5XoPI1acuc9My4UQcIJiFaYImsR9a4Mfbd+9OqPmnBdzkZz3EntWqtUEMs04xo5jnQB2YX5eHB22rpzsvAi8ruXjMyzA6ygdhM+3/fWk1CnKi3JafnLLkHzhVOWGXWln65QHumNZrEC179w88rOyovMiuR6jWBCWaXGalZap8yw+UpaFhS3PiggDG8R61rko8g1VMRmg0oTQcBLUmVwpI7TPmtQAHpnllPx9xU6deY5P9JUwsMw3DQUdA8D+y2xQWAM9A+Pucz3XvTjgUYYthfTc5oBohsyCAqY7q99hhFL6hRbxqDiYOMONFCCcdQVlI0V77ahCmYr9vOWFE1qMjIKhsJmD6FKsN1xKrSKcfWP9eIIAmqU+B4dw66g53IYELCg3AgtVWD1odDajnGh8KYSBTfvNvnLMW0gMYFXkf38Omwr8CVW3x/DDdbDOEYFYqOqnFiVAo94NJYfb2Q9IL//EoX73Gft+Wxu7r98zm5T6YAxAA1mN9oKPDCUrQcQqN0N2x9RGOv8NpH0ANTXAuV3yN0KSWn4oaGoQUAeVv3AuHJ1xirzzuTjoa5FWK9moELO6nzQXk294H3ZxTokSDffKYGDOzZkpLjpb+9Amn6Kz3YANvc4S08f6vN6W4rpkaQbpgOZPgq+VeNc8FGlAjOYFK9WNJWnF9aftPSCtuWEOGEb6LZagpxArhsEM0uzsR9h3mZiYnOQJioc0QEk7Qeo0jL/IIIoKZgEtqWyzUHS3xEBD8kd8esujUo/h8kFmQ82LNk+opk8QZGk+URfqiST2E/8XzU7DHi7lZCGynvQVkvV2l3Y+JrHOE9pj4LGAC3Lf48t7m+Z4L6rUd5vvekiepIFtYYR1fwKjzqODEDMjoppQl/MbdK9117psXPoFpQlD4aZSeM7wyEe1i9jWnNHinyFibeYVpR9XnMCfJgF4I7fHsHfVjY4QnAJ8Mocy8DxsWE4b7nfOam8FEr154yDPoi1owZ9qYoAevYa6JrF4ptJJRPU2UXnxQglmG3/HbRizpgougTH+lGt0z82rBicf2FhAYDOlJkVgoFgRELBNHLoRFYnJImFE70cjBpuCUswKyICegPBgTkMQUVXVoOerxu9tll42x0kbS+rs5TxZRqixWq5jgQbuUlKfPP+D8vZzevDg0EMp6jY+e7ZwFPF+iCzAHU0DQ6kSimAdAnPUKwS/s+SrYtkjGvsU8tLeA8HCfubzKDoK5MZwIECQO9O+eUzV1fr5rvbZEc74XfysplhZ2BxYKrnNCsPbaCMYRZ1aRBfZ/JWlmRBUtaTpLWno1z1fByUvYuYVH+wsIDiGFS1GNV+momqcypyZVa8DDn7i5hZeiA26N6kHqXfAtjDkvMFgQA4IUwKzkb0uuKL02STpt35Z/6PYXEOxyuGsxqTKaVclmd7lZge0LWTR0OvWGWLT8ktfpBiktAL2LZiDPQNQoSbYxJfETiB4R7ePv//wf6Z4L63Qzffe17S8gMIkf8MMq1xJzg4BkHByVnhy9cC+RByhG384Adj15oDG7OsQncWeYvORgGPgc0ydLI4EDDZHOOKw+XGV9+2RqfwEB4XnYb6r9CIm3VwBskbAjo8vfCOnVgwKojxel7b6OiNSRaIPg77KGnYEEIAhB1IpgguGmBnk4+5qfFW2gG7bQoHpX2sBPJqPcoZlOsrwHcTKhxMVWkM79rPT4jQ27tX5xoT2/7plttEeiiplvEoVW6Qm31yQXFMLS5x7lId42GO2vQZhkwoafuayaOWVhhsLaF+WrnGj4KPBmPfkv6fyje8bF1QYL2pRb/NINQdw900PWHFBwpIFkINJmQM5gUARCAxtLm4zOEBAme99vSRvuFTSdEd5NlW5sGiTQAH4Ols484s17crTJ4rXEbQIp2eebnolONhbyT2gQq28pu9OOc86hdf4XpSdvaYlb785NdI6AQPQMT1aaViwSsHArUkrKmTmuRSY+K/3moN4R13VndvvDeyDOGLW+a4uZgb3KOpjsB4KGJ2ELgd6N/9dWs9I5AkIkha5GaBEEA5Mq2TSIahkVDwC+uQ5JoGFL4Yv0brPSH5KyY/IeCQjEvGWk9gDyQQIRX+TXB0VFYe8u28hPd46AMGuEfGnoaYwZxN1fC5hHTdKKPAgnG07iBV9sXeLnRu6CnlwLtPIn/+IhdUwo64cCo+SMMK+ozw8OZ0j+nr5V+jPlyW9CttCT+6jzZzpLQFDj5ERW2cxNrexkZD06ooAJX4SEFaHJR65rK4exznth0b4eXrBtP+yAP9gRqa0npGtdtQZ73gP81aj1fO4v/FJ92GUW7a4X+d2dJSA8PsU6O3zWfQ8WyThtafcFdy5RrejTQW6Ev198jPTYDYs8cf32A2TB3/FJFw5jaR/kAMgse8b/yEZBoGbJU42/x3tE9oasvEkT3nkCwkTClwUfEi+GxeZp9An0HAr+mhAk2uUXkAvMaNIStNlloTk69Lde1YePRwEXXF9GmxNIYjT51OellTfxQ+iMQx3S34ajMwUE8CLcuQzjUZpWdRqteIbaiblugmFLU0h01kfqz/TRhhvkdbdMSTF0olANUXREIITqRrBWWTGJ/2egxJJHt/D1gJWgWdpwdKaAcLLBe0tXLOtitLj7HYR4jQQjuGJZsGxkA4kB+RF6VxTjjTPAhiffsdE+7ltk9zDrjUKFY7R/QIsQuaLZKwQK533+9ez2bTa3nSkgLAJq/rDfesES/FiMLJaxWgqg2HBV0VogCqsQDgqrxt3TZsvYgNulm9e6OzhMHfZKtIeRbQek3cjrgvJ1xY3cvKW56MXHtl3kqnY2O1dAeMp1d3JTC5XPglnycHi1HbMRClArrmijMNR/h++2Xn3VG7CX+/QSZMBBKVD7b9RJUKAGo2Gyt9AbknJfaEVp8rrMak4rBGN7PboL9+kDvvmXdbaA8OyHnu5MI5hS1CwQ1cLkMtpKyJOJanlvQPNJkuDt7gulK7/rvkp/HGhYEnyHnOa13JA9AxWBXAJTFRML3FV25zVBKEmjN/U5/vnu7qe0+eh8AUH109AegmMWHQdzVghJ8lUZ0RiZ9uDPdXtMevk/0p3nNZDwoUV2Ex2w1t9DIlOOIKANEr5unXhDC1tnLOiNZnoNOswrhHsv/mpr9m7vwfR2voAwKTDyveu7nhdhoREaqxEZUe08C4VMRrZgwkh/BeEBXPeXr7Z2R6ceLP4bPrLkStL2n5Q23i8aA9HD/VX3OVLzoj1snmB7hAwPIu1XnOGSeb3u52/N1N4X99qg7+gfAsJkktF936luHmT7gaTBTB5XTkMjGMOsihYFpkwGSNRVk1SEz7UTx8pjpff+rMp8mC0byI7D94VmIGOerReYO9hjiFhhuoJvo+YfOIlBTDpj9B8BYb1Gb+aaBBZ1NERytkL9aQ47THxDfWUrfcuDPtRs7hnS7X9w1kNY0tt9cFisuZ0El9Ua20abNHqZwBgf7RuSMDu5ga0dQ+CpyC/hlFMQBY3nRf/VGfNSs679S0BSkxz2O3fQa+kqEyJhLZ2pSBzhdJmZHTb2xmhwg2N/yTekB69oS/iEHQx06N3nRMek4Wyn1kRjJKAwWeazAY5BdegL/6oDQfE5cNIxsX73/vqR0TXxIOp/AsJkL7+2tNPR0lpvr3Z04u9WVBWaxVoWDHHzyjLD2fUJLt1oGgpT4f2XSHef3x5ZeA6FzQ6SNj1AAmFrEbzIBaVfYS2tSfoNrlIpGX/wkHDGJznvGK3jKCugYxWmJ/X+HTj6p4CwkJhStE9YdUtpSJhVigw7JygnY/Y/xxlNAjYzvcquYazZZslrHK49xW1wYBetNqDbhLKUbliQthnVZ/AEWy6DVhFzHJJjjDBBOJ0h76RyJY8EhedSo12bPnWrdPanGktO1+C57b8CwkSzAaDTf/vHq52dsocHfok1qvHegBVGDmzzpPTn/8ipZFYeSk+YAh+7vjUSjcutJW3zYWnMjr7xMxiRdeLAbpJogdCtaQmYGMOUxMRKAULbQHrB+/j31T9yf6zD80T9W0DyNFpxA2nLD0hjdvKwZaXnI5Es2hSgQUAAo3n4Nz09whwzQaO7URBEJHM7Gw3CaOOGmig9eq1/B3AW48id6qzivS0gIr9DBIkQK1lvzKjVtpJGjQmKT8LXNfSjKfBJ7kZhWbZJMNRzaEU0LIcEfhhRLA4CtOfTt0tXn+xEfP1gFAJSu8jbHO55ADY8hHO0D8bsQGJwZjPrbhT+I6W59PMI2DcCwuay1s2xyey7o/VXtnTO61nPjGhJnEKC4Dx3vwsRwQJjbg84jDWDiY6xwGZWe5uHrAlNZ2dc/j/bH1hHhHi/gTMjfM39Ipwgc3kegIfW2zF4rLge9RzkP5gHS7CW3HQ872g3q/rRKARk/sWG/IH+E7QVNlUSG83MLBq2hNmR/T2sxoRadzYgDm/kTUxIUmCia218nfcGWcguq2UfrzSetJuofiD7gXDCV3qO1HTGnb+ZjjG7R40+z2CQdHq7R0Ai35+JUh4CISTES4QLU+r6U7vPQt9BAlQIyIIWE3OFRjgb7CUtPio0A+ZG0AlhblgXWfBbUfuQLQ4QFP5mZkv0xQtF4polBSflL6UmtU38bj9q/28BN2o9QEJ40r+obdRjzXPgCKMfO23caPj5agg6kThjmHZNlvUaaEpYSDCnnrxVuvyb9e1G1eLCVAjIwhaI05XNAjH2Rvu6uZEawUyaUpBlhwllnZQiMkSI1MytCA1nrzxO6OTosgaTUUdRMcXCPKu9J9vENcJCz2/TWFRGwvcV/oU1BR1SbQxqvkRA+tn8pjlqTD9Mqqys5H4Rovx/TLx//twToova3KbFN/yi3l4hIG81Y2y8dXd0Wn/wRrapo69gRSOEeZPEabmp7f+jDiU7zlqfPCD2sckrWiKaXcIv9bqWajW9B9NXyeunoKa5V3mW+O7s0Zd9xF1iw6+JPA8YNO6BBOG4+6SHrvQ2cMXwY6l8wloLs4aLKaqdATYZKNfdjvG/ciJX2jnTSDKgKpZo5Pf4cJoxC/QtYrO+zr+I9sW1q1LRItmLMIUpIB8WeUsfJIUgEp9Zj29/Dq1lDUQJQEx1v4L8zT9Odvb1hTpH/XM7FAKyqOtOSBXmFLrPZs7E/I+MXtW0fjYBihOazcmJbrXbmEMhVGmG5X2kICXEpRJzrkhclQAvO93mZysh46j0s/uLXoVZtwFUhHvBFwEFQBs0cGW9DTcv6jy2yfs7R0DSfp6/D3k9F4KKxe0/7psdKP3AiHBVokjRgRaNkj5AntCZYLNGl11Vpx4/IsO2bzC1eBjeSyIPgcxa8BBCswlCu1hEjWTnyGqjT3IfmFL3X+p9CzugoKmey9umJlZJWmNrLwHl5LZusa95pRuZbMo+qX6zjHcDBhuSkOiSqzjsGzJnuKByo1rr4XDw03E2LREOdCJjbe/jxAfJdq1/U2tu5fcaSQJtkOOVTTvTt+G62SYZap5/X+J9OSY969qjGN2agfbQIGwCOsSS6V53Z4ka6DTfMUEQjAmPew9wGsO//Ghzi5uICJFDIAGHluF+gYSjKch2I1D4AJmTqCxVnP6pCRCiFIiMkpngECRI0y0adeJrAJ605qXRJ378fd5Rd/K4bm2G4k1vnIHWFxCgEzRn2fIQaSidinITZT2HXBisB/jDjoVCUKbR6riF4g8WIg7KoUTHgqitDb8CBNzxcx5yTW2CRqnNnyAwONa3/NYJEYCxQNLGyDxNbf6l2PW9moHWFRCSdeQfYGtfdnU3SSyMSpQnbPH8NyYDWuPFR0KTPC5NGVc0yenV1ig+3Lo+CAm6Xb7k1W4mBBGeNCyS3Xb0/QDPROZ6lgsGVW28JjzmPUD4XDGKGejFDLSeBgFZu9tXHCSXoUdrghMx/3RiTXAiL8DfKNiZ+IwjZF9+3AWmFsXai0kqPtqLGSDCl+ZfL76mWR9tHQHBpFp/N2mL9zn+KeP3ZrtHLD9h2WiMjOJkgozoFfF8TC24dic8Gux/zZrafn5doDkrjXVya6D3BAxITBK8AMrSJtq9NQSEzY6vAe6JfEItrskywVHhxp4z+HkwjhicO/ySKc9LE5/yF4TJRLNwdIvRnBmgihHkAYcZh92Ge0r3/aXa8ZYkpRVntfZoDQEhb0CNOCdNQrARDCtMCgoefuffBgQMVj9MKP4GJSZwiRce9BwINQ/FaOIMlJx0bu3tgxc5UMcrru8NdzgEoU8C9zXu7pYmvmiugBDipBsUIVx4mTLGb4A+yMmCYcRgRoM8JEoh05Tx0sSn3e/AtKK1c6EtmigQC7g0JQEUoFELz6AIC/TwEqPcNyTJizXw8NXeeYp1bEG4S/MEhFg/CFkSf9Q5kzjLCSLZleaT1TFQFz7D4/5P3OJMGjjh5ANaKdfRWlu0+XcDt+9Wh0lLr+JQfOP0BUoTSIIkw8A/gQmetW2x9WyOgOCQr7eb0+7ABG5shwH2y260hoiNYh5afT12owPr4GAqRvvMAFHJt33Q19kAk5BDRP2+IaIDYvPcfZ78bDFCvuYICKfJZu9xVKw55TFJtuxQWg5zLBXVcMBI7jpPevq2lrZV22fHNvhOOeQIwGywt7TECl5DzzA0ARg16uXBqw2Unrld+utxLWVqNU5AIAlgQgjxrbaFm1dEN8AmWaw8K/TkYLppL0iPXu/+BcQCxWjfGSCPxYFIVIv1RhiyAzH8YhmIwUe59wLpX2e0jJA0RkCsKm9nafAQiXAsjBlj93YHncmBf8pKQOc62A6i6DvOdj+j0weBiawXR3t2Ks8UmgPiOkgxqHnHx8Scph1FciQzF0DwLzq2Zda+MQLCJufhyY6vt6u01KrelCXroBEKJoYE3zN3OfCwP4RqmROiPDSdoQssBwno2xaM5vTJOUWSkP7qsFliTVQI+WisSo1LlAWQy7ry+y1BZ9o4AckZpiKPjDkbg5MDKDZRKcu0RhKwT1ajxb8E4UAwCFRgg2NG8jd4fjt5gJTY9EAPzCT62IjEKf6KqkkOCg7JS09sunndeAExB22QE0i/+oprjmQW7+SNMf+zkSd4xyec/ZCgBfy+7A84ftGo2Tux0+YEK2K3LwfrY2DsMuxbG+pHw7zylDcuIrnYpNEcAWnSw7bUZdkomBtJGwphAiYH2WXYC6lx6cSBltjk3dIW1PfQ/BM2+UHBpB+BmtpW3ZQHX3dK02aiEJBmTf2o9aWdjnJOXQqlDLY/21ECN/2qJezvuk0NgrHXcdJKG7nvYZl1zKwBHrCxcuHIgxHqv/R4982aMAoBacKk2yVX21J656c9L0BJLja4sZ5I+vtJji3r2FGSVt9K2uFTXsuP74lJCRzFWF/gJI5cCVqVXBj96ylnaPAoBKTBE165HB2eaLvApjAmk7THBzrjyO1/7PyKyM0P8mQxtfuE/mHOt1p92k7AyDLMzU40Kwjty05seHSzEJBmCAjRO7QHESxCn4lStoRpWXrgCu8W26nh3pxzC/t+QVppQ49oMg/kRaydBKTg9IyMXvaYYbCy/PPUhs5LISDNEBAWfY9j3AansQ2LjxaxLrvzpPsulq4/reWAe30/VSUJQCOHBc1+GEbAB3MlHGNBzJGUrgQyMD+BHTXo8CgEpO9X/a2/kRDv3t/wTYFQgErGWc/eh/deKN10eueGeuefoXd8ymtHzB+L/AgHhfVHkc+NEXZ3STMnS5d9Wxp/z1vPcx+8oxCQPpjERf4KoBb7nCAtPdpPSrBnhHuxwcEjUQB22QmdHcmqnTRIwTG1qBUx3uCh0UAoIEi81/qwdHndyPMPSPdc4NwDdR6FgNR5ghf49RDH0YIZACdCQSjTqEuHeLiXF6HNcY05JZsxBW+45jo7SFsf5iFvwsDUrIPonr8HJMlloCiUVD/0t7rfeiEgdZ/iBVyAeu29j5eWWNGdU7o/DV8i+o9ERytgFtja/WUwD9t+RBoDqJUCOg6LqFnHYSebDkEe1KnUB1FN+uzddZ+dQkDqPsULuADwEnwQNEl2eMJZN6c06Eav+K53y+1Pg/nY42t+cAwd4bkhmv9QJGcCwmu8NPk5N7UaQKlaCEgzNiDO+V7f8A5WyeCCI5pVlQgJmCyYP/rbAGFAhA8twqFhgjDeQYvUElF2jWAgMMmRVsc5KgSkjpO70K8etZ6053HSyGU8EUaSMHscWo/yQdKtZ0q3ntGMu2vuNQnzjtpAevtHfR5mTHGBQFAQCuqJyKw3qDVcISDN2A4wuOz+Vc8g44hyWmavdcMhDXLtcc1Pm3F3rXFNwJybvdcFBOAmRXT4IAhHA4vKCgFp+HYoedHYtkc4W71V1ZEDCb4v7gc80gN/k64+qeF311IXJIJFzxWK5wiFz5rWUOGwpSh6FDZ4SxCtoX0bRWOYVWiMxGMlaR63dNe50g3/1+CbKy43/wwUAtLoPYFd/c5POQ5r4FCaegT+KHBYCVoEi3XfXxt9d8X15puBQkAavSVIBu78eYe7G/aqK7LHNRBvojP4HzAOFqOpM1AISKOnH7OK9g446tjYZIyN2QRtEv4HERqwWPde1Oi7K65XaJAm7wFqHPb8urTCuo6/yhZrBsyLJCGO+82/6XwChyYvRXcuX2iQ7sxSX74HAdnreGm5NT3Ma3kQWAaj/TPaBKG55XfSnX/uyysX39WDGSgEpAeT1quPICD7fEtaZrQTqAGlsBDv4PhJv5N50i2/96rCYjR1BgoBafT0E6VKH4TahyQtwB9hGFnBQO+U9CVXvgAAARdJREFUde5RTtFZjKbNQCEgDZ/6krT9J6T1dnHHnH7ns6Y7zDsFBJOLVtbnfd7rIorRtBkoBKQZUz9mF+/FaG0Ayl4kRTbd+i7ygjTtSemybzYMc9SMaWiHaxYC0oxVooIOtnMShdbMEoAifghRrHiBPaJfhnXyLUazZqAQkGbMPP4GeCxI0jLMawznUQ+CTEx6Wnr8pmbcXXHNmhkoBKRZ22GFMdXSUmt1bY0YndWDGhFMrE6lH23WnPfguoWA9GDS+uQj1o4MahvURbCa508EBORqMZo+A4WANH0Jihto5RkoBKSVV6e4t6bPQCEgTV+C4gZaeQYKAWnl1SnurekzUAhI05eguIFWnoFCQFp5dYp7a/oM/D+rcvvObRssvAAAAABJRU5ErkJggg== Beleuchtung und Neigung RGM Messung Kippwinkel auf/ab Winkel Kippwinkel auf/ab Beleuchtungsstärke Beleuchtungsstärke Verhältnis Beleuchtungsstärke gegen Winkel Winkel f f 时间 时间 accY accZ tiltFlatUD x out out (1) out (2) t t (1) out (3) accY accZ t (1) x t accY accZ tiltFlatUD tiltFlatUD x t t (1) out out (1) out (2) out (3) out (3) out out out (2) out (1) out (1) out out (1) out (2) out out (1)