Pendolo Meccanica_33 iVBORw0KGgoAAAANSUhEUgAAAMgAAADICAYAAACtWK6eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAN1wAADdcBQiibeAAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAABHRSURBVHic7d15rJzVecfx38GAARuD2YyNMeCEzWZJgLBvBpMqQUBIgERh6abeRKTBahqFNKA0CjSiVE1EFVWCCJKYJiVAy1IawBhDKAWzBJIAhhJWY+MVvOAN3+v77R/PDNeYe2femfOeOTNzn4808jXMnXnO+H3mfd+zPZJzzjnnnHPOOeecc84555xzzjnnnHPOOdcEYHzuGJxrS8BEYCkwE9ghdzzOtQ1gG+BRBjwLfCx3XM61BeA6PmoVcF7u2JzLCrhgkOSo6q8kzza543Su5YD9K2eKeh4BJuSO17mWAbav3GsUtRSYnjtu51oC+FkDyVHVB3wP2Cp3/M4lA0xrIjk2dxcwNnc7nEsGuARYG5EkbwJH526Hc8kAnwD+GJEkG4AZudvhXDLAGOC2iCQBuBkYlbstziUBBGAGsDEiSeYBU3K3xblkgJOAhRFJshq4IHc7nEsG2B2YFZEkANcD2+Zui3NJACOw8Y5NEUnyJLBP7rY4lwxwJvBORJIsAz6dux3OJQNMAuZGJEk/cA0++u66FTCSwafEN+JBYI/cbXEuGeAiYE1EkswHjs3dDueSAQ4CXohIEh99d90N2BG4JSJJAH4BjM7dFueSAXqA9yOS5CXgkNztcC4Z4Cjg9YgkeQ/4Uu52OJcMsBtwX0SSgI++u26GTXi8nLjR96eB/XK3xblkgNOAxRFJshz4TO52OJcMtkvjYxFJUh19H5G7Lc4lAWxdOchjzAH2zN0W55IBzgVWRiTJAuD43O1wLhngQOC5iCTpxToAQu62OJcEMBr4ZUSSANwB7Jy7Lc4lQ/zo+/8Bh+Zuh3PJAEcCr0UkyXrgL3O3w7lkgF2BX0ckCVixn+1zt8W5JBgYfe+LSJJngMm52+JcMsCpwKKIJFkFfD53O5xLBtiLD5eBa5QX+3HdjYHR9/6IRHkYr9bruhlwDrAiIkmWAKfnbodzyWDl4X4fkSS9eLEf182A7YCfRCQJwN14sR/XzYgv9vMG8Knc7XAuGeCTwCsRSbIe6MndDueSwYr93B6RJGCj7zvkbotzSVBOsZ9ngY/nbotzyQAnA29HJMkq4Lzc7XAuGWAPYHZEkvjou+tu2Oh7bLGfR4AJudviXDLAWcC7EUmyFDgjdzucSwbYByv91qw+fPTddTNs9D222M89wC652+JcMsDFxI2+vwkck7sdziUDHAzMi0gSL/bjuhtW7OfWiCQBuBkYlbstziVBOaPvLwJTc7fFuWSAE4GFEUmyGvhi7nY4lwywOzArIknAi/24bgaMIH70/Slg39xtcS4Z4EzgnYgkWQb8Se52OJcMsDcwNyJJqsV+htXou2+zP4wAIyVdK+myiJeZI+nLIYQl5URlgDGSJkoaJWknSWsrj8UhhKVlvpdzNQEXAmsiziZvAcdFvP9WwHHAFVhHQr31LiuAx4Frgc8A25X5eTj3EcBBwPMRSdILXN7ge04CrsI2l4ixErgB36DCpYQV+7kl8mD9T2CnOu+zL3AjcfVShjILOKFVn5kbhogv9vMScMggrzsSuBJYF58HNfUDPwP2yPH5uWEAOAp4PeIgXQf8+Wavty9xvWbNWIbXnnepALsB90UepNcDn8M2i8hhE3Bl7s/SdSkGiv3EjL7H7FpflpuArWM/Dx8HcYMCpkn6d0njcscS4YYQwldiXmBYjYq64kIID0k6StLjuWOJ0AP8fe4gXBdjoNhPp+oHzmm2/X6J5QoBzpX0U9k0kE7zjqTDQwgLG/1Fv8RyhYQQ7pB0tKTncsfShF0l/bCZX/QEcYWFEF6WdIykm3LH0oQLgOmN/pJfYrmmAJdIulFSdFdqCz0RQji2kV/wBHFNwcq9LZDUaTVITg8hzCn6ZL/Ecs26SJ2XHJLU0LiIn0FcU4CnZOMknWaDpPEhhJVFnuxnENcwYJI6MzkkaTtJny36ZE8Q14zTcgcQaVrRJ3qCuGaclDuASKcUfaIniGvGlNwBRPoYBde1e4K4ZhyYO4BIW0kqVP3XE8Q1BNs6aGzuOEowvsiTPEFco3bMHUBJCrXDE8Q1avvcAZSk0CCnJ4hr1LrcAZSkUDs8QVyj1uQOoCSrizzJE8Q1JITwvmwBUqd7u8iTPEFcM17OHUCkTZJeLfJET5BhDhiD7WW1AJgDFBkEfD55YGm9UjkT1uUJMowBkyU9JqlH0l6yOUp3ASPq/OojqWNL7OGiT/QEGaaAUyU9KWnLirYflyVLLQ9JIkFYreILptzQgB5Js2SbGWxpqaTFtX6/sjvI3AShtcI6SfcWfbInyDCC7XH1L5Kul7TNIE9ZLenCEMLGAi93c6nBtc6dIYT3cgfh2gwwvnITPpRXgS0vt2q93k5Y5adOc2LKz9l1IOA0apc5e5QmamsAV7fkkC7PQyk+X9ehsEuqenXSfwJs2+Tr7wosb8GBXYZ+oNMXermyABOBR2ocMH00WGNwiPfpacXRXYKfl/G5ui4AnE/tb/aFWDdvGe+1FfBQCw7wGIvw8mwO2AO4rc7B8iCwZ8nvO65yELajTcAZZbbXdSDsrLGsxoHSi92PJOnaB04B1ic/3Bv3zRTtdR0C+/b+jzoHyVu0oHsTOBtLxHbx49Rtdm0KGAFcCrxb5yC5DRhsxDxVXJ+jPc4k15HobOnaHHAy8Ls6B8gSbAf2HPFNI1/3by9wWY52u8yACcBM6leRvRXYPXOsE4H/SZsLH9GSS0nXZoDtgb8D1tQ5QBZhpdLaAtYF3AOsTJoW1lM1kxZeSro2AGwLfA0bt6h3gNwI7JI75sEAewI/AtYmSIzbgcNzt9G1EPbNez7wSoGD5Gng+NwxFwHsDnwLeC4yMd4G/hk4OHebXAtVEuNC4OUCB8li4C9oQU8NMArrGJhQ4mtOAb6OdVG/TO3u4fnA/cCVwPHUX/HougkwErgEeLFAYvRiXZgtKccMnIn1iFXf+6uJ3mcbYBIwFTgSOByYDHRiFStXBmxqyPepPQJetQm4BWjJxtHYTOBr+GiP2TpgVCticMNU5VvyBooNqPUDdwGHtTC+vag9E7i0Sy3nJEnAdtiN9wODfCsP5QHg6BbH+WlgaY2YHm5lPK7LAcdii5JWF0yKfuBe4OQWxzkCuIrai6vuoU27kl0HAQ4ErgCeL5gUABuAm4BDMsQ7GfhNjdh6gcsBr4rsmlM5yGZg67sbsQrrlZqYIeaAjXS/VyO+Bfj0DdcobJT7VOAfgBcaTAqAZ7FR8tGZ4t8HmF0nxtIXV7kuhp0lerDJgM3ML1qF7YOb9RsZG3OpdU/UR8LFVa4LYBMEjwf+Bht/qDcfaij9wMPAxUDW6kzYQNx9deJ9lUS7f2B7aZ0GTErx+i4RbCrFEZVv1h8DTwEbm0yIalI8BnyjHQ4GbJR6BrXPGv3Y2S1JDUJsRL66uKuPRCPyHQc4CDgHOAHYGxhsy8tWxDES2A+bU9QD/BD7Nn2d4uMStWzC1j/MIMMN91Cwb+x690hvANMTxvDNSlJsbg0Fa5XntHXKFwe+JekaSZt3D/YDiyUtkLRQ0luSVsr2hX1P0orKz9XH+hpvMVbS6M0eO8mql46WNEG2S/nEys8pFhAtlzS78rg3hFCoalErVJL0B5IurvPU2yR9JYSwIkEMI2X7AP/pIP97lOzfaUPZ79sRsMIsG0r4Zm4n67Gen8uxS7K2u4nFetdmULvrFmxx1dkJ4xhH7S7vX6d6746AbZbc6eZjmx78LXASmW+ya2FgDcmrddqUfDYwNhP3jRox/DcwJtX7dwxsykQn6MMWJ90D/ADbmWN87s+vCGyw73zgpQLtfBg4NHE8n8W6s4dyPZD00r5jADsA38Fmoz5N3t33+rBR4cexbtvvAV/Evu3a/mZxMMB07HOtZyHWQ5dsqgg2Pf5qhp7LtQH4s1Tvn0rL59ZgO4nvVXlMkrSnpDFbPMbKbrbHSBpZ4+VWyep2Vx8rNvt5uawDYFHlzyUhhE3lt6j1gFMkXS2p3oDjRkk/knR1CCFZfXOsQ+CXkoYaP1ku6bwQwm9SxeCGOewe4wvA3AJnjH5sKWvyxVWVs9jiGrH8Adg3dRxumKKx5bhgPUfJ62BQrPaI34y7NLBpGTMoPsXlCeD0FsW2X+X9htKL3Xu2XTe463DY/K+fUnwPqeeAc1oY3wXUrk04H58e78oE7IKdLRpZYPVb4Eut+pbGNpi4tU5Md+O7G7qyYNvbXE9jOw4+CpxFC1f3YeMstdapJ6094oYR4CjgH4HXGkiKjcDPSTzIN0is47CtPWt5EziulXG5LtNkUoBND/8n8izHvRh4p058v6JFG9i5LoJ1gZ4IXNtEUlQXWF1EhhF+bFHVf9WJcSlwQatjcx2MDy/HrdXLM5R3sfuRlu9qUom/6Czg7LVHXAcAdsMWgv0r8McmEgJsfth92E3wthnbchb1ZwEvAc7LFaNrY9gl01TsDDETW6HX7CrEPqwnagaZdwwBDsBGu+u5FdgtZ6y5NNxViJ1evy1pb0mvSZpXebwYQlhbbnitB+ws6WBJUyQdIukYSZ+UFHM/0CfpIdnqvTtCCMtj44yBTf/4rqTLJNVaAr1I0ldDCHe3JLA21FCCYP3cz0garKIPkt6Q9KKkFyp/viJbVrswhPB+VKQlwm5+q7OJD5IlQzUpyloHskLSHEn3Srord1JIH8yk7pF0hWwW9VB6JV0n6aoQwupWxNauGk2QwyT9vsn3WiJLlgWS5ld+XiZbd775mvTVklYX/YfBBsx2lk2NH62BNeljK/9toiwZJsjOehMkpbhc2CTpSUmzJN0v6cl2mV5f+WL7gmx/gMl1nj5H0mUhhBeSB9YBGk2Q8bK1Fa2q8LNSdmYayrayxf85bJJdWj4m6QFJc1JsfBBjs8S4WtIBdZ7+lqQrQwgzkwfWzYDvRtygdrJFwJ1YtdlpJNo/qizYOo1nC7RrLTZNpCNXVabW1HweYH/ZzetU2XX7VEn7SeqGuTi9snuneZJekvQHSU+EEN7MGlUBWO2+z8s6UY6o8/R+Sb+S9O0QwvzUsXWq0ia8YTt+VG94p8pO6dUb4XFq3WVZEX2ye6L5so6FF2TJME/SKyGE3nyhNQ4riXahpG9IKrKKcLaky0MIzyQNrAu0ZEYotovFeFmyVG+aJ2lgDfpOlUf179Ub7aJWym7w12jgRn9V5efFkt6WXWO/LeskWBxC6I9tV27AHpIulfTXkopMM58t6TshhKeSBubSw9Zgj63zaOv7gFSA/bG9rdYVvH/6X2Ba7ridSwarcfhlrGZH0U6Sx4EzcsfuXDLAFKwcc5FS0VSS5wHgrNyxO5cEtq9xD42Vc3sfmyc2NXf8zpUOu4Q6G/g3GluCuwz4PjAudxucKxVWxepc4BfU3s92MPOAS4EdcrfDudJUzhRnVS6HGk2K9djU8+l4SWbXLbAqW1/HtsVp5PKpai7wV/guha4bYKsNz8eW0Naqk1HLisrvfyJ3e4YzP02XAJvlfIyk4yVNl62XaWZe2gpJd0m6XdLsdlpDM1x5gjQIK0J6mKz0wJGVx5SIl1wh6R7ZasP7Qwgbo4N0pfEEqQEr4XyQBlYbfkrSoYovfrpM0p2yM8WcEEJf5Ou5RMqczbuVpBNka5wXSZrfCWvUsflce8tmwR6ogWQ4UDZpsgwbNbCw6gFJv+2GyZLDQSkJgvXFz5a05RaUq2SzZ9/SwHLb6qza6mzb6hLbUlbjVRK1OjO4ugR3nAaW21arW1WX4DYya7gRz8s+k1mSHumELwv3UWUlSI+sHnasDxJG0roCz18rO8B3liXCKEk5Bs56VVlYJWmupAfbqWa6a15Z1UbL2mlvx8pjr5JeL5U3ZYnwhGyjhmdCCOvzhuRSKOsMcoCk30lq2zriTVotW2n4oga2M3oqhLAka1SuZcq8ST9C0tck7S9bNThBtSvUtosNsvuj+RpYdvuSbCO8hTkDc/kl7ebFttbcvORz9edx+nDZ5x1lN9Zl2bwc9BpJS2U9awtkyfDBEtwQwjslvq/rMm01DoJt+1lNmCLb0IyS3aivVCUZvLfIOeecc84555xzzjnnnHPOOeecc84555xzzjnnnHPOOeecc84550rz/9oJagRGSiEBAAAAAElFTkSuQmCC green Determina l'accelerazione di gravità (g=9.81m/s²) usando il tuo telefono come un pendolo. Questo esperimento usa il giroscopio per misurare il movimento del pendolo e calcola il periodo di oscillazione T. Devi selezionare la lunghezza L della corda usata per il pendolo, così phyphox potrà calcolare g = 4π²/T² L. In alternativa, invece di misurare g, puoi andare sulla sezione "lunghezza" e considerare g = 9.81 m/s² per determinare la lunghezza della corda dal movimento del pendolo. (L è la distanza dal punto di rotazione al centro di massa.) Inoltre, nella sezione "risonanza", traccia l'ampiezza in funzione della frequenza rilevata. In questo modo puoi costruire un oscillatore forzato e modificarne la frequenza per misurare una curva di risonanza. Ulteriori dettagli: Il periodo di oscillazione è ottenuto attraverso il modulo quadro della somma delle tre componenti del giroscopio. La prima parte delle misure si usa per fare una prima stima; l'ultima parte per ottenere un risultato più preciso. gyr_time gyrX gyrY gyrZ gyr anyGyr count autocorrelation_t autocorrelation dt t0 t1 t2 search_t search_y periodEstimate factors multiples multipleFactor multiplePeriod periodHalf fineSearchMin fineSearchMax fineSearch fineSearch_t fineSearchResult period frequency amplitudeSkewed amplitude avg periodhist frequencyhist amplitudehist maxamplitude relamplitude pi2f g length lengthcalc gyr_time gyrX gyrY gyrZ gyr 2.0 period frequency period frequency length g period frequency lengthcalc frequencyhist relamplitude autocorrelation_t autocorrelation period frequency gyr_time gyrX gyr_time gyrY gyr_time gyrZ gyrX gyrY gyrZ anyGyr Poiché vogliamo mantenere un segno, ma vogliamo anche consentire l'utilizzo di qualsiasi asse, osserviamo semplicemente la somma di tutti gli assi. Ciò dà risultati negativi se il telefono è montato ad angolo, ma di solito l'utente eseguirà l'esperimento lungo un singolo asse gyr_time anyGyr 0 5 autocorrelation_t autocorrelation autocorrelation_t autocorrelation t0 t0 2 dt t0 dt t1 t1 dt t2 autocorrelation_t t1 t2 autocorrelation search_t search_y search_y search_t periodEstimate 1 20 factors periodEstimate factors multiples multiples 4.5 factors multiplePeriod multipleFactor periodEstimate 2 periodHalf multiplePeriod periodHalf fineSearchMin multiplePeriod periodHalf fineSearchMax autocorrelation_t fineSearchMin fineSearchMax autocorrelation fineSearch_t fineSearch fineSearch fineSearch_t fineSearchResult fineSearchResult multipleFactor period 1 period frequency 6.283185307 frequency pi2f pi2f pi2f length g 9.81 pi2f pi2f lengthcalc anyGyr avg amplitudeSkewed amplitudeSkewed frequency amplitude anyGyr count count 250 amplitude amplitudehist count 250 frequency frequencyhist count 250 period periodhist amplitudehist maxamplitude amplitudehist maxamplitude relamplitude gyr_time gyrX gyrY gyrZ autocorrelation_t autocorrelation frequencyhist relamplitude