PendoloMeccanica_33iVBORw0KGgoAAAANSUhEUgAAAMgAAADICAYAAACtWK6eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAN1wAADdcBQiibeAAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAABHRSURBVHic7d15rJzVecfx38GAARuD2YyNMeCEzWZJgLBvBpMqQUBIgERh6abeRKTBahqFNKA0CjSiVE1EFVWCCJKYJiVAy1IawBhDKAWzBJIAhhJWY+MVvOAN3+v77R/PDNeYe2femfOeOTNzn4808jXMnXnO+H3mfd+zPZJzzjnnnHPOOeecc84555xzzjnnnHPOOdcEYHzuGJxrS8BEYCkwE9ghdzzOtQ1gG+BRBjwLfCx3XM61BeA6PmoVcF7u2JzLCrhgkOSo6q8kzza543Su5YD9K2eKeh4BJuSO17mWAbav3GsUtRSYnjtu51oC+FkDyVHVB3wP2Cp3/M4lA0xrIjk2dxcwNnc7nEsGuARYG5EkbwJH526Hc8kAnwD+GJEkG4AZudvhXDLAGOC2iCQBuBkYlbstziUBBGAGsDEiSeYBU3K3xblkgJOAhRFJshq4IHc7nEsG2B2YFZEkANcD2+Zui3NJACOw8Y5NEUnyJLBP7rY4lwxwJvBORJIsAz6dux3OJQNMAuZGJEk/cA0++u66FTCSwafEN+JBYI/cbXEuGeAiYE1EkswHjs3dDueSAQ4CXohIEh99d90N2BG4JSJJAH4BjM7dFueSAXqA9yOS5CXgkNztcC4Z4Cjg9YgkeQ/4Uu52OJcMsBtwX0SSgI++u26GTXi8nLjR96eB/XK3xblkgNOAxRFJshz4TO52OJcMtkvjYxFJUh19H5G7Lc4lAWxdOchjzAH2zN0W55IBzgVWRiTJAuD43O1wLhngQOC5iCTpxToAQu62OJcEMBr4ZUSSANwB7Jy7Lc4lQ/zo+/8Bh+Zuh3PJAEcCr0UkyXrgL3O3w7lkgF2BX0ckCVixn+1zt8W5JBgYfe+LSJJngMm52+JcMsCpwKKIJFkFfD53O5xLBtiLD5eBa5QX+3HdjYHR9/6IRHkYr9bruhlwDrAiIkmWAKfnbodzyWDl4X4fkSS9eLEf182A7YCfRCQJwN14sR/XzYgv9vMG8Knc7XAuGeCTwCsRSbIe6MndDueSwYr93B6RJGCj7zvkbotzSVBOsZ9ngY/nbotzyQAnA29HJMkq4Lzc7XAuGWAPYHZEkvjou+tu2Oh7bLGfR4AJudviXDLAWcC7EUmyFDgjdzucSwbYByv91qw+fPTddTNs9D222M89wC652+JcMsDFxI2+vwkck7sdziUDHAzMi0gSL/bjuhtW7OfWiCQBuBkYlbstziVBOaPvLwJTc7fFuWSAE4GFEUmyGvhi7nY4lwywOzArIknAi/24bgaMIH70/Slg39xtcS4Z4EzgnYgkWQb8Se52OJcMsDcwNyJJqsV+htXou2+zP4wAIyVdK+myiJeZI+nLIYQl5URlgDGSJkoaJWknSWsrj8UhhKVlvpdzNQEXAmsiziZvAcdFvP9WwHHAFVhHQr31LiuAx4Frgc8A25X5eTj3EcBBwPMRSdILXN7ge04CrsI2l4ixErgB36DCpYQV+7kl8mD9T2CnOu+zL3AjcfVShjILOKFVn5kbhogv9vMScMggrzsSuBJYF58HNfUDPwP2yPH5uWEAOAp4PeIgXQf8+Wavty9xvWbNWIbXnnepALsB90UepNcDn8M2i8hhE3Bl7s/SdSkGiv3EjL7H7FpflpuArWM/Dx8HcYMCpkn6d0njcscS4YYQwldiXmBYjYq64kIID0k6StLjuWOJ0AP8fe4gXBdjoNhPp+oHzmm2/X6J5QoBzpX0U9k0kE7zjqTDQwgLG/1Fv8RyhYQQ7pB0tKTncsfShF0l/bCZX/QEcYWFEF6WdIykm3LH0oQLgOmN/pJfYrmmAJdIulFSdFdqCz0RQji2kV/wBHFNwcq9LZDUaTVITg8hzCn6ZL/Ecs26SJ2XHJLU0LiIn0FcU4CnZOMknWaDpPEhhJVFnuxnENcwYJI6MzkkaTtJny36ZE8Q14zTcgcQaVrRJ3qCuGaclDuASKcUfaIniGvGlNwBRPoYBde1e4K4ZhyYO4BIW0kqVP3XE8Q1BNs6aGzuOEowvsiTPEFco3bMHUBJCrXDE8Q1avvcAZSk0CCnJ4hr1LrcAZSkUDs8QVyj1uQOoCSrizzJE8Q1JITwvmwBUqd7u8iTPEFcM17OHUCkTZJeLfJET5BhDhiD7WW1AJgDFBkEfD55YGm9UjkT1uUJMowBkyU9JqlH0l6yOUp3ASPq/OojqWNL7OGiT/QEGaaAUyU9KWnLirYflyVLLQ9JIkFYreILptzQgB5Js2SbGWxpqaTFtX6/sjvI3AShtcI6SfcWfbInyDCC7XH1L5Kul7TNIE9ZLenCEMLGAi93c6nBtc6dIYT3cgfh2gwwvnITPpRXgS0vt2q93k5Y5adOc2LKz9l1IOA0apc5e5QmamsAV7fkkC7PQyk+X9ehsEuqenXSfwJs2+Tr7wosb8GBXYZ+oNMXermyABOBR2ocMH00WGNwiPfpacXRXYKfl/G5ui4AnE/tb/aFWDdvGe+1FfBQCw7wGIvw8mwO2AO4rc7B8iCwZ8nvO65yELajTcAZZbbXdSDsrLGsxoHSi92PJOnaB04B1ic/3Bv3zRTtdR0C+/b+jzoHyVu0oHsTOBtLxHbx49Rtdm0KGAFcCrxb5yC5DRhsxDxVXJ+jPc4k15HobOnaHHAy8Ls6B8gSbAf2HPFNI1/3by9wWY52u8yACcBM6leRvRXYPXOsE4H/SZsLH9GSS0nXZoDtgb8D1tQ5QBZhpdLaAtYF3AOsTJoW1lM1kxZeSro2AGwLfA0bt6h3gNwI7JI75sEAewI/AtYmSIzbgcNzt9G1EPbNez7wSoGD5Gng+NwxFwHsDnwLeC4yMd4G/hk4OHebXAtVEuNC4OUCB8li4C9oQU8NMArrGJhQ4mtOAb6OdVG/TO3u4fnA/cCVwPHUX/HougkwErgEeLFAYvRiXZgtKccMnIn1iFXf+6uJ3mcbYBIwFTgSOByYDHRiFStXBmxqyPepPQJetQm4BWjJxtHYTOBr+GiP2TpgVCticMNU5VvyBooNqPUDdwGHtTC+vag9E7i0Sy3nJEnAdtiN9wODfCsP5QHg6BbH+WlgaY2YHm5lPK7LAcdii5JWF0yKfuBe4OQWxzkCuIrai6vuoU27kl0HAQ4ErgCeL5gUABuAm4BDMsQ7GfhNjdh6gcsBr4rsmlM5yGZg67sbsQrrlZqYIeaAjXS/VyO+Bfj0DdcobJT7VOAfgBcaTAqAZ7FR8tGZ4t8HmF0nxtIXV7kuhp0lerDJgM3ML1qF7YOb9RsZG3OpdU/UR8LFVa4LYBMEjwf+Bht/qDcfaij9wMPAxUDW6kzYQNx9deJ9lUS7f2B7aZ0GTErx+i4RbCrFEZVv1h8DTwEbm0yIalI8BnyjHQ4GbJR6BrXPGv3Y2S1JDUJsRL66uKuPRCPyHQc4CDgHOAHYGxhsy8tWxDES2A+bU9QD/BD7Nn2d4uMStWzC1j/MIMMN91Cwb+x690hvANMTxvDNSlJsbg0Fa5XntHXKFwe+JekaSZt3D/YDiyUtkLRQ0luSVsr2hX1P0orKz9XH+hpvMVbS6M0eO8mql46WNEG2S/nEys8pFhAtlzS78rg3hFCoalErVJL0B5IurvPU2yR9JYSwIkEMI2X7AP/pIP97lOzfaUPZ79sRsMIsG0r4Zm4n67Gen8uxS7K2u4nFetdmULvrFmxx1dkJ4xhH7S7vX6d6746AbZbc6eZjmx78LXASmW+ya2FgDcmrddqUfDYwNhP3jRox/DcwJtX7dwxsykQn6MMWJ90D/ADbmWN87s+vCGyw73zgpQLtfBg4NHE8n8W6s4dyPZD00r5jADsA38Fmoz5N3t33+rBR4cexbtvvAV/Evu3a/mZxMMB07HOtZyHWQ5dsqgg2Pf5qhp7LtQH4s1Tvn0rL59ZgO4nvVXlMkrSnpDFbPMbKbrbHSBpZ4+VWyep2Vx8rNvt5uawDYFHlzyUhhE3lt6j1gFMkXS2p3oDjRkk/knR1CCFZfXOsQ+CXkoYaP1ku6bwQwm9SxeCGOewe4wvA3AJnjH5sKWvyxVWVs9jiGrH8Adg3dRxumKKx5bhgPUfJ62BQrPaI34y7NLBpGTMoPsXlCeD0FsW2X+X9htKL3Xu2XTe463DY/K+fUnwPqeeAc1oY3wXUrk04H58e78oE7IKdLRpZYPVb4Eut+pbGNpi4tU5Md+O7G7qyYNvbXE9jOw4+CpxFC1f3YeMstdapJ6094oYR4CjgH4HXGkiKjcDPSTzIN0is47CtPWt5EziulXG5LtNkUoBND/8n8izHvRh4p058v6JFG9i5LoJ1gZ4IXNtEUlQXWF1EhhF+bFHVf9WJcSlwQatjcx2MDy/HrdXLM5R3sfuRlu9qUom/6Czg7LVHXAcAdsMWgv0r8McmEgJsfth92E3wthnbchb1ZwEvAc7LFaNrY9gl01TsDDETW6HX7CrEPqwnagaZdwwBDsBGu+u5FdgtZ6y5NNxViJ1evy1pb0mvSZpXebwYQlhbbnitB+ws6WBJUyQdIukYSZ+UFHM/0CfpIdnqvTtCCMtj44yBTf/4rqTLJNVaAr1I0ldDCHe3JLA21FCCYP3cz0garKIPkt6Q9KKkFyp/viJbVrswhPB+VKQlwm5+q7OJD5IlQzUpyloHskLSHEn3Srord1JIH8yk7pF0hWwW9VB6JV0n6aoQwupWxNauGk2QwyT9vsn3WiJLlgWS5ld+XiZbd775mvTVklYX/YfBBsx2lk2NH62BNeljK/9toiwZJsjOehMkpbhc2CTpSUmzJN0v6cl2mV5f+WL7gmx/gMl1nj5H0mUhhBeSB9YBGk2Q8bK1Fa2q8LNSdmYayrayxf85bJJdWj4m6QFJc1JsfBBjs8S4WtIBdZ7+lqQrQwgzkwfWzYDvRtygdrJFwJ1YtdlpJNo/qizYOo1nC7RrLTZNpCNXVabW1HweYH/ZzetU2XX7VEn7SeqGuTi9snuneZJekvQHSU+EEN7MGlUBWO2+z8s6UY6o8/R+Sb+S9O0QwvzUsXWq0ia8YTt+VG94p8pO6dUb4XFq3WVZEX2ye6L5so6FF2TJME/SKyGE3nyhNQ4riXahpG9IKrKKcLaky0MIzyQNrAu0ZEYotovFeFmyVG+aJ2lgDfpOlUf179Ub7aJWym7w12jgRn9V5efFkt6WXWO/LeskWBxC6I9tV27AHpIulfTXkopMM58t6TshhKeSBubSw9Zgj63zaOv7gFSA/bG9rdYVvH/6X2Ba7ridSwarcfhlrGZH0U6Sx4EzcsfuXDLAFKwcc5FS0VSS5wHgrNyxO5cEtq9xD42Vc3sfmyc2NXf8zpUOu4Q6G/g3GluCuwz4PjAudxucKxVWxepc4BfU3s92MPOAS4EdcrfDudJUzhRnVS6HGk2K9djU8+l4SWbXLbAqW1/HtsVp5PKpai7wV/guha4bYKsNz8eW0Naqk1HLisrvfyJ3e4YzP02XAJvlfIyk4yVNl62XaWZe2gpJd0m6XdLsdlpDM1x5gjQIK0J6mKz0wJGVx5SIl1wh6R7ZasP7Qwgbo4N0pfEEqQEr4XyQBlYbfkrSoYovfrpM0p2yM8WcEEJf5Ou5RMqczbuVpBNka5wXSZrfCWvUsflce8tmwR6ogWQ4UDZpsgwbNbCw6gFJv+2GyZLDQSkJgvXFz5a05RaUq2SzZ9/SwHLb6qza6mzb6hLbUlbjVRK1OjO4ugR3nAaW21arW1WX4DYya7gRz8s+k1mSHumELwv3UWUlSI+sHnasDxJG0roCz18rO8B3liXCKEk5Bs56VVlYJWmupAfbqWa6a15Z1UbL2mlvx8pjr5JeL5U3ZYnwhGyjhmdCCOvzhuRSKOsMcoCk30lq2zriTVotW2n4oga2M3oqhLAka1SuZcq8ST9C0tck7S9bNThBtSvUtosNsvuj+RpYdvuSbCO8hTkDc/kl7ebFttbcvORz9edx+nDZ5x1lN9Zl2bwc9BpJS2U9awtkyfDBEtwQwjslvq/rMm01DoJt+1lNmCLb0IyS3aivVCUZvLfIOeecc84555xzzjnnnHPOOeecc84555xzzjnnnHPOOeecc84550rz/9oJagRGSiEBAAAAAElFTkSuQmCCgreen
Determina l'accelerazione di gravità (g=9.81m/s²) usando il tuo telefono come un pendolo.
Questo esperimento usa il giroscopio per misurare il movimento del pendolo e calcola il periodo di oscillazione T. Devi selezionare la lunghezza L della corda usata per il pendolo, così phyphox potrà calcolare g = 4π²/T² L.
In alternativa, invece di misurare g, puoi andare sulla sezione "lunghezza" e considerare g = 9.81 m/s² per determinare la lunghezza della corda dal movimento del pendolo. (L è la distanza dal punto di rotazione al centro di massa.)
Inoltre, nella sezione "risonanza", traccia l'ampiezza in funzione della frequenza rilevata. In questo modo puoi costruire un oscillatore forzato e modificarne la frequenza per misurare una curva di risonanza.
Ulteriori dettagli:
Il periodo di oscillazione è ottenuto attraverso il modulo quadro della somma delle tre componenti del giroscopio. La prima parte delle misure si usa per fare una prima stima; l'ultima parte per ottenere un risultato più preciso.
gyr_timegyrXgyrYgyrZgyranyGyrcountautocorrelation_tautocorrelationdtt0t1t2search_tsearch_yperiodEstimatefactorsmultiplesmultipleFactormultiplePeriodperiodHalffineSearchMinfineSearchMaxfineSearchfineSearch_tfineSearchResultperiodfrequencyamplitudeSkewedamplitudeavgperiodhistfrequencyhistamplitudehistmaxamplituderelamplitudepi2fglengthlengthcalc
period
frequency
period
frequency
g
period
frequency
lengthcalc
frequencyhist
relamplitude
autocorrelation_t
autocorrelation
period
frequency
gyr_time
gyrX
gyr_time
gyrY
gyr_time
gyrZ
gyrX
gyrY
gyrZ
Poiché vogliamo mantenere un segno, ma vogliamo anche consentire l'utilizzo di qualsiasi asse, osserviamo semplicemente la somma di tutti gli assi. Ciò dà risultati negativi se il telefono è montato ad angolo, ma di solito l'utente eseguirà l'esperimento lungo un singolo asse
gyr_time
anyGyr
0
5
autocorrelation_t
autocorrelation
t0
2
t0
dt
t1
dt
autocorrelation_t
t1
t2
autocorrelation
search_y
search_t
1
20
periodEstimate
factors
multiples
4.5
factors
periodEstimate
2
multiplePeriod
periodHalf
multiplePeriod
periodHalf
autocorrelation_t
fineSearchMin
fineSearchMax
autocorrelation
fineSearch
fineSearch_t
fineSearchResult
multipleFactor
1
period
6.283185307
frequency
pi2f
pi2f
length
9.81
pi2f
pi2f
anyGyr
amplitudeSkewed
frequency
anyGyr
count
250
amplitude
count
250
frequency
count
250
period
amplitudehist
amplitudehist
maxamplitude
gyr_time
gyrX
gyrY
gyrZ
autocorrelation_t
autocorrelation
frequencyhist
relamplitude