Transitmethode - SensorTag*Astrolabor Universität zu KölniVBORw0KGgoAAAANSUhEUgAAAMgAAADICAYAAACtWK6eAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAAyKADAAQAAAABAAAAyAAAAACbWz2VAABAAElEQVR4Ae19V3NcSZbeKe/hDUGAAD3ZzZ42bDdO06GZUWgVitCGYiO0sS8KvSgU0pP+gmIf9RPk9aAHxT5odlaxqx3Navy057Qhu5ueoIEhfKEAlNf3Zd0s5L24VSgAVYV7wUryou7NPHny5Dl5Mk/6wIOPP/9fIvJdPG11W5W85FIlCfSHJRAMtBX3C42sXJXqalGSuZAkI4kXmhVdyPzvUHplQKoy2pHEqh3B2kMKDvRY25Vi0B/sSjK9RHoc8CkHegriU8H1yO4OB3oK0h0+91LxKQd6CuJTwfXI7g4HegrSHT73UvEpB3oK4lPB9cjuDgd6CtIdPvdS8SkHegriU8H1yO4OB8LdSaaXit84sPrZDfn6z/9cYuvrUg0FJBCPy+DLr0js5WuSeeUV6bt8WarJlN+ydWB6w49nHx84UqMIwWBQAoGA8LcYqki5EpJYKiWRaET5N4rX82+dA5xBL1cqsr1dlGIuL4VCQcrlslTgx6cdbvF//HfZ+Mu/lEq5KHnIkFgDgRVZm3smob/7mZrGD4TCEu3PSGhgQEKZQYkPDUlw5oyEpqYlNjkloZERqaAs+NsFJPy3f4sMt2HhAhUjFArVn2oMyjIWl4HpYRkZG5HR0VFJp9M9RTlCiaEyrK+syeLtedmaXZPS1o5sb21LoViQUqmkFKVaPdoilMz8Uxn8q59KCMqGdkNKgargP35RWKApZU1/uSSllVWpLq9AprTUAQfAENLn+qVgPCnBkVFZT8SkMjwspVSfbKXSaHWSUkI5yKOsVI5Iqyalk7/ht99+E/jbo+kUEoVYLBZlcX1ZZufm5M7CPUmAKdPT03Ll6hU5deqURCKRTubpxOFmod/c3JQHDx7Ina/vyPLdBUluh2VieEwGBwclCf5Go1HFV7beR3FL//7nquBqNauOY5ne2JDsrG9KrFiSUL4gEDA0piQVyBrNllIKVIdQIvhJUAosTztbEnjyUGA7SOh2CBZFVfqANIygQDUgmaERkQvnpTpxRspXLqEVykg1FhOBKUdzzgutD7Ui/PK1a+1oQOoy0TVYrrQj2XhetqMFuQ/BfvHFFzI3PyfvvvOunAdjwuFe96fOtCYv5Ofa2pp88fkXcvvObRkZGpYf/fhHMp2ckIFkWpmzbL35tMP9ansbBbhaL6Df/k//TRKDQwq1MuGgENUqmhL+4llbWJDN2Yfy7P4DWbn5lWy+/1sZQjuTqgQEegCFCQAX4aFXwFKmJ1qbneXnIniq1fehUqAf/ZwgtCcUimCVclTSF85J6tXrEn/lW9L/+mtSRl6Pw6GcoqDq6qKNFETRB4kngpKAndo30C/jp8bld7/7nXzw4QcSjUVVi3LU2q6N5HoW1dbWlty8eVPu3L0jV65ckddffU2S+aiktiISj8bbTzfKr6rkoHDlSlkyo2NN0ziV6RO5eEku/rAGtra0KP/hn/1TubKZl0SgjNYl1DQ+FbtSgXkG240KWIZy7gTysnrjMwnf+IMEER+Gm8hATFJ9AxLrH5QEKonEpYsSmZ6RxOWXJHHuLDtJTdM5bGDnq3HQTZNqcnJSvve978lvfv0b+eSTT6Svr0+G0LHrucYcoKlKs+r+/fty7tw5uX79uiTj2AMCUweVbkdcFX2DYhAtCKt87ONZ/uYrGb7yUstpDYyMSQCKW65uoZMfBJZa7cuGQw3ilIDXcvWWzyzcbG0sV1VtC+Mjv2sltKQ5vD9VocFf/pLtjuJDnHBnJyUzfkoSZ2YkMzUjgYlxiaLfGz89KUGYoYd1nVcQizJ24CdB7LVXrslHH30kt27dku985zuqU39Y4k9yPNbiy8vL8tVXX0kKI4Gvv/666muw/HSgwa+zkpvbWKMrSwi+v/o3/1Km/+RPJTlxWkpQ2DAqOxb0YJgDMiw+7JwHJRJGbyMalt/+1U9kHCZhFJV+CWaW6uEDCl0Q1UKgLBuOOTFygzybjnUABwhMp60O+sOIU+EbZMqjWck+eiih9z+QAqyXCFo/UAqYsCTTA5K4clGG331bBv/sn0sQo6qtuq4pCAkKhoJy8eJFmZ2dlXt376GPdkEmTk+0SusLBcfW4969e5LbzMk777yjOuO1foajxLSZK0EU0ggqsyBqf7p4dktW/+t/kVXW1nDsf5ACRYtV86M8KscorKvRAPEvHrwAPsgdpbXo9QLPESxzFIv4tO6UoYAqDaJRuKzI+Axj2JmugkRq/V0MErC1Y1KBEAYK8A0F52BBkaNrSKeYXZHcJx/I8qcfymtvfVuS7He36LqqIKQpkUjINUw2/eY3v5FbX92SsfGxXiviEBYFv7q6Ko8fP5aBwQE5e+5s2zrhjqT2fMYxGtZXRc1bK+UIrxXbQJCdcygPmhbWy9rmZ+Gv1fLWL4IYgw+LNYuzueU6iMLLkBAVwjCtqCAcHmYoh4oZl+GEYxj/MV4EifFfSPkwjIZYzQWBga5q0ap+SQ+QBtnHgbIW/vzfycaf/an0/fGf1CLt87frCsLMTp2ZkrGxMXn65KkyI/jec7sc4HD5wwcPYdKU5MqrV1Slshva2bdoNCHjeOLKlmNBZcFE4aIWoODWir3yUgWXSlNWxbqmFAwpo8gSkvAcESOOImt5OGXCwY8jWgwnXJUtDMLR06g5fBIv/teGnGvIlF8FCqrClFbWFKqGhSNktej85j8OJyunlKxGU/Xhfan+5/8ob3tVQUgwO+1nps/IHOZJ2AHlJCIVp+dqHMjlcvLs2TNJppIyc3amq7wporDeKWQlisLGgq26ESCrisKmlMUSE8siH35qBQnQNMJIFGt1VVZZwiFXFmhVngFLR1EznkJFEAWsgup/VKvhKBPEo52ipZaK9jJ+a9h1y0IwqhJxVpEYR8padV1vQTRhHNXKYHJo7umcmlyMcZKo51RHdgFzC1QSzhfRJO2mC9OOhymiHYsSzagQbH+r2OsgVTxVuPahcuC9pkwMwRd+WJhVI6HhGMJgyzn0QHsrxap/GC+HqUyVkloJHWSiuq5kRvpdeaVyjI+Py9b2liwuLnYlTT8kwrmA+bl5ReqZM2dUrddNuitsBdTcBUd6MDJV5RNFS4KuMB6sXMR37eEcBR/9rX9r/mEVxgJmK2RV1Ml4uCBFPxW880EX3PHYYiKsNaf6HDYFhIIiX3TsQYUOMH90OApao7MpFAk+PXla1RIc6zebz6YRT3jgNmayV9dWlXlF07PbTtnujuq+XYsgu50XnR7LlpmHkCN/Gs7t99gUhMSwc04TgiYF13C96I6CZGvKBYinMOl1HGZnIJZUplMjWVRQYjicy77JoRzWawkfq9N+KBz7RCJtJn00yXQLUsEIF1cit+qOVUE4ATY8Miz5PJYWYFjzRXes5Z48eYKJ8qIa6TuMrX1UHlbjNIFqHeuj4vJKfGcLQkOrVXesCsICMDExoeZBnj6tLSFolfCTCMeKYmlpSY3yHdfQd54Tey7lR5sotO85MVifJvGBIMwWpIr+TzDikxaEvB3FnoEgZjyfPX1msxN9wPe2k8hVuzs7OzKM/RNxLPk+DhcKojOuJvMapG50fhtAdNSbhf1o/VWYWwcYMT3WFoScTKVTqh+yvrGuhjY7yl2PI3/+HMu/UThPnz59fJSy+eB/a0iUw7G2p12UqXFeDifvDim3DTUQuTSCCr1ayu/WRDZI/NgVhMvtuaq3Uq4o86IBnSfeW3fQuX2Ww9/H5bgYsWopB2nQQ6b6t310UfOgHOaESAvIW2k9tEK7o0O6aCVbdceuIBxd4F4Rrvadn5+v11ytZuCkwNG02tjYUPv3uRXguFy/lbZuQY6LjmbpHpW2ip8UhIzgeD+HNJ8vPlf7qpsx56SGsf/Boe6R4RHVST+ufJYw7G6aJxzStRb2dqiPyJZED/3un+uD9kEIbypUEAtjDtJqHXsLQuK5pzqRTMhmblPtvd6fTScPgqNXNDO5/F+P2R9LLrGa11yGfiw0NEmUJpZZ4JuAqiDC28wyaH8Ea9xadceuICSU5hXNCg4lrq2utUr7iYGjAJeeLynFONYOOjhaxnISTxSKNknX2YJgI4kEIq2v+/MEL5gJDm2y5lxaXmoTa/yDhvMfqv+BDvJx9j/IMXOPhhsHWYnZamQ3II/7hQ6wo9AzCsLja6I4zYIz6n4XwEHLB1fu7uR3cMhF/NhPe6mCBlZY6BkIVmUc0cGewWJG9bSEiadumc+RCdiTKnci1rZx7Qly9fCEgpAyHirH0054igc3DL1Ijh10bo5iJXEQ+7oTPMrA1OVcAWopW2fdTIsVWOuVGLv8ZrffxOR8Z+E1H2f4wb73mFcqOnYgogJo1XlCQZgRjmIlcGJHsVBUs8mtZuAkwPFwBm4HPa7lJSYPg9Z5ZVzV2x6nC3x7sB0VC/emBPxmYjHT7KizFeFCvRdp4SJr4mw2q+TOFuS4XZkHNuxDhHvN7BYJysEDr/gcg3Nr6TiJGO7LtEzNfrxoGdFRAcn0ARyEzJnkF2kDFTu9W7kt4RoobiI7bsdts/s5t4K3X5zjCOegD8uV03HTVKuudchWMR4Sjhnp6+9TBYVDva3buIdM0CPReOYuZ9G59J/n6x6348Fx1sk6UjJKh54w1IYX5aNX+DamGYXT2kHYGKbLIchAAQdrt+oMFrQapXNw/X39qpBkN7MvzIw6Jwg5gjU0PORa23WO2+6YUziBff+Cvxv3ILC7sQ7/5tYiHBzb3lalEQ7PKAgzHovj/FXUpDw0jVtPXwTHDjpH7UZwn4YXXCIO/rdgZjlp7ZSicLCArRWO1FbPGkfEMPrLgsuz5A/sED0ab72l9oyCMKO0GWlm0b0IHXUKnkO8HFnxioIEMZL4lHcUHMBROSi7TigJeUOzjhWobj34mwXvlvGLQ7VcKSU9bo6bvSKohFt17lhajd1mOGacZhY3UL0IS07YcnAGPYRzbr0wgkVxljCbv6NOFzmYcKnsugC7xmxhwpDnvOmz3kwcxB1GAB8ejZqnYmBJTD86SzyArggN2jEj4J1x3BzPxQoeoK/X+t5Dt9Q64McNVDx2f2V1BblEAgerzDpAUedQcgad5iSXl7CD3oka+MDUYzMR/x2U91pB9O/edPcXpC7SeyFr57wrnKjSt1A+SCDP4i1i/ojwVBSsAVAgzf5QQbBcoRmILcxzLQjnQsjkdV4eqaRko/dEfbD1oGPr0ajG63aGQyg8SkEaJYwyqAuyE4R50I8z7CDfdvwwsXgItSoNOLIUChHGIeisOdmacOtTFC1LxNFiNGrNiLvawPxC0B7nKQUhdZxR58OhTz4n2bH/wXkf7qj0ioKEUzjJESYMC5hbfayO1EGpMY/VabeMgijwXOhSRf+ihFaiilunuI+jhHYiAZVIlHC5DxKNgMYoWgQeaI1DUm00NWqNqzz9HfhbdZ5SEAqFW3D7cGsRO1k0QU6qY145EMFNUgP9A57JZhSHRZTRJzqKO2orUoRCLENFcnjyVaiCcYjEDgp4AeTxPGAekUqLSbU44Gcepdne+rjngnuPWnWeUhASrfeGMKfaBGk1M36C4+EMzB9/j3uJu8m3MPogNFn07bZmmPnOSlhPHupfWzhMHtdavD5x2LjoBasFXN+GAoBbd3BIj7rqQB1Nirjcxk6eRbHyQC2nhJ+CwiBAuMxWr/nQbxD7Qcp9rd932JhKM7ddfGfN2o87DelYw/L7JDpODnIFL+d9OP/jFVcJogPbRpa7Ksk+mWUrEIfcIyzroEXd6wHNIFm8/baAUotLptWoFk29PNqTItSEK9lLLTR+rIRbda1351vFeEQ4DvFyTRa5sbKCkawT6risnzUhzSt1kaqH8hlQneCDE6T3rrOgsgHQjkqyZ15CzV846md1JKmln8QBRPlKHm1CQNJQ3Hy1JHG0GHH0S2hhlNHaFeCXUp14qo/y3O2LIF1WsGYly3tKChgxbNXI8pyCUDF4aBq1nH0Q2ugHOa5eC8XrvzSvuHKZreWewnPMxAeMYVD2J8wCdljSdEtykLxy3iMUgFmFMqHpQP8cSoM5dFQuvHs9zU48+iJ0rdJ5EBocKnzY7LcvHjNJhYjH4lLApfUnsaPOPNJ85HyPV2bQbRLkTboogOpWKQQctNPNxkONdqEw61+Nn7gaOrYqLjPjKgb+RNFS1OJz9AoP+hNUIu2cuBnEGxX5aMcZlRB2rrbqPKcgJJytB0caONPM1a4nzVGQaqUA5MbDu1ut+brFhxBXu4LG3WJ1sJRZMJ2PxsC8Ox8dVlthZS+SLP71BwRxwJeUcaUx/c3Cv4un9kb61WPLCNb8+XkUi1ljE8h+CG/FPYkjWZw9z23lVD6P6wzeWhFy/1sC36m0tnIFUGfB5jed/lUfLfyx4VHFvVaQd6PWVQJe+r0WGkaSLBcc7q2oWf/dWHxrRAsprVHLRbGt9kBqV/rYU/DAF4VDBeHd29n12m47D5DVNhJ4iglXK3MNlhf7V1XBXS2QQRnPXjWxs4G1OYswC2azllB34O2x9VetD8HWQTmu23I6qwMfgmJwwWFUtx9IvFbwoTjWi1YSTQ9p3L2XEEPYKFetOu910kE5WxAOf3J0hzWt6yhIqzn0IJw+mILzHwcZcuxaVjgMCuUIW8OsraarC6YJr1qifZRHw+uOvP7mL+Prgm76t/K+n9K2gsOTCkLC1UgWaljWtuyLeGG3XSsMbQWGe9ApPC4xOazwW0nnsDDhaAYTcqh1ce5PyKXT7MRr9JOdQai7Ua2rWt4ycKxa3i3f7q0MI+Ax6GAF6lQm+mGeULkQhn7p1FCzZQaqbyhbkPM8B3AHgz4A4qOAknk0PcK4KovrsTjUe6IUZCOrlvQPDw0fhU2dixvBKllYO7T3O+XcWptW0mLZcCoH45l+AWvYlyNohOcxPzTL6IIHnJT1pIKojFhmFrffcmUvV/meCIdCx5E5zg5nDnC6RjfzrgqVGh/izbZtTrklfJZm4keDh0EIWwj0IGoz5uigW40TftBT4idn2xGnHMDNvCA7wIlC1frwb231byXT+n505tzTCkKlqMzhvF6seuW96ifB0eTg1deUGw/t9qIbOn9Bih9/IDHQ2Mx8OijtrbcatQ6/2ruBmp9d9jyPeUSpj+CrGEHzhs1SO5hH2oZfHudcBbAKOTV6SuLDgxLGb2JoUJIDw5LBXv8UD+TDvFoErUcUC2EP4jyvICxI+tyog2TMq7Ac4t3Zwp49mI+84Ze1tdfcuZdflqeoiot4WCOzFdEjRBzXUlqDANW/APHMAcB2/1og9OSeDWYRi01UOCa/1fAsY3HJeh5ARWKIoeinMxLjyoIklt9kcMoLdpdGcBRSqB/+STz9qDDTfRJHGGHTaIGTqYzEUdGEDnBzLSlt1XlWQVhw0pl0fclJqxnyOhzNxZ3CDoRby5sX6R2fPidPsMQDMw2q5NeUA+oAs6aMJkXV7CjTIRR+Lh7cwXsAs9yRaEyqLOj4DaAPGeA5v4m0FNCnqaJgh4ewc3L4tET6UxIZG5UEavaR0XHJ9A/iKr7jPxPMTRaeVRCOStDECuNGUt4bzk4Y/fzuaC6qPSCY5/Fi60H+jl84r86OymDFMU84WUYpyQZSkpmZkMDIuAyfmZLQ4JAkJyekb3BEzpw7izVlQ34XjSv9nlUQUsuRLJohPHmQa7K8cPKgKxcP4MmVAVR2tWL5APG6CRqEvf4Pf/K/ldnEs3o5ghjm3MgL6DytIMrMQivCUR+aJidBQTazm2qIdwg1sFdbEOpBygPHoHpBHz1ts9CkysA25b6J9bV1L/DrSDSw5aCyB2DLc5m7lxXkSBk9QZE9ryBJ3CfHZeFr6/6/mo1LTDjxSbPxJE18niB92JMVTysIa1iuyWLNq233PTnwkQdbDyr7STAVfcT2I5HqeQXRtS1rXq7J8rPTSu7lDrqf+dsJ2j2vIFzRm0qmlL3u9wOtqSA8qIGreHv9j04U5/bj9LSCMLuccVbnZGEiija8nx1H4krlnoL4SYaeVxDuHkthaQFtdxYwvzqah1y6z7kdr67B8itvO0m35xWEG4rYqeUaJj+fk8U+FAcb0righiNYPROrk8W6fbg9ryBqJMvqg3DRIguZHx3Nw0qposxFr52D5Ud+dotmXygI70+nacJamGaKHx3XYOUL+dphFCdgTZkfZXAYmn2hIFQOnpNVLmH9v0+vZlMddPRD+gd7M+iHKajHFcfzCkLG0CTh7jvuP+Bkm98crzjIYpstHftTvf6HfyToCwVhR12dkwXThHMJfnOc+9je2VbnOXnxHCy/8bOb9PpCQdSiRdS8PNiaq2Fb37rZTVY2TosnubPvxIuBeiNYjfnkxRBfKAhNEl3zbuawngkmi58c97JQqTmDfhI2ffmJ90el1TcKompeLBPnSBbnRPzk9J56noPVUxA/SQ576v1ALlsQdtRponC7qt9OfOfAAlsQ9qN6HXQ/lLhdGn2hICRXz6jTvPJTR52KoZa5Y4iaS/d7CrJb+Pzw5jsFYYHzk4LQHOSeerMf5YeC0aOxxgHfKQhPEtA2vR+ESFo5ipVK46gbTHj2WhA/SG2XRt8oCDu3PAaIhYzrmvwykqVm0DEPoudxdlnfe/MDB3yjIKx5OZLFm6d4NZtfZtQ31jeUMnMEy5NXHfihlB4jjb5REPKIBYytCO16Lv7zg9vI4i50/OsN8fpBWntp9J2C8Bgg7srj3hCvOw5J0xyM4tJIKnav/+F1ie2lz38KwkWL1jlZHNHysqMZyCUmPLqoZ155WVKNafOdgqir2XBeL68Q8PqMOoejSWNvBW/jAuj1EF8pCJnJjjq3rVbKFc/vDWE/iQoyiFPMey2I11XBnT5fKQhteA7zctEft956+RAH0sc5EJqB/f2486K3i9C9BHrc11cKQl5SQbh5ih1gL3fU2XJwYSVbvN4SE49rQRPyfKcgesJQtyBe7ahzQSXna3qnmDQpfT4I8qWC8DjSEK6I5hAqWxIvOrZu3D8/OIA787ASuef8yQFfKgg3T9FsoXJ4cUadrdrK8oqibxCXSvY66P5UDlLtOwUh0bTrOTJEM2tt1Xsz6jxFkTPovJuyHxdR9jrolJo/nS8VhCYLF/9xqHdlZcVze9TZOad5RVOQk4Q9BfGncpBqXyqIWpOFuRCaMvq8KS+JQNM0PDSsRt28RFuPloNxwJcKwvmQOK4YjuFieM6oe6ofgtUvqyur6pqDkdGRXv/jYOXRc9C+VRD2Q2hm0d730spe9os4gsUBBE4Q9jronivzByLIlwrCHFJBRkZGVEed/RCvOLZo2c2s8DxhXnPQW8HrFckcjg7fKkgkHJGB/gFVQ2ub/3AsaG+s5eVlZfKxdaMS9xSkvfztNjbfKgivUmY/hPMhnLX2ipm1tLSklriPjY31OujdLs0dSM+3CkJeqPkQzFTnd/KyuLjYAfYcDCX7HWzNYtGYjI+P9xTkYOzzJLTvFWR4ZFgN9y4vLR/7QQ5sxXh2cP9Af6//4cnifnCifK0gHCHiZiSaWZyY49qs43RLi0tqBS/NK7ZuPed/DvhaQdgB5mw1l53ktnLHambxioOVVczq49/o6GhvgaL/dUPlwNcKwhyofggUpFgoyvPnz4/tDkNujuLDQyXYqvWWl5wMDfG9gnADFVsQtiTra+vHNqv+bO6ZOhJ1bHxMXdXQG97tKYgnOMCCmM6k1agR+yHz8/Ndp4ujVxxF4yx6b/Sq6+zvaIK+b0HIHe4Pod1fKBbk6dOnaidfR7nmQL6wsKCW3Y+OjfaWlzh44/fPE6EgoWBIDa3S1OJQK/si3XI8I/jx48dqecnk5KQy9bqVdi+dznPgRCgINybx5EIWUE4aPpp91LU5ES4t4TMyPCIc3u1tr+18oe1mCidDQcAxdtZpZg0MDsjiwmJX+iJsPR4+fKgGBs5fOK+OI+p1zrtZfDuf1olREBZMLhA8d+6cuo/j9u3bHT9Yjv2d2UezKt1e69H5wnocKZwYBSHzuMKXo0h85ubmVO3eKaZygeSdO3eUMl64cKF3vGinGH3MeE+UgrAvwkm6SxcvSSKekFu3bsmTJ0/avmedw7pffvGlPHr0SM6fP6/6PjTxeu7kceBkKQjkw/VZ46fG5eVrLysT6/33329rf4TK8dlnn8lnn38mU1NTcvXqVbUw8eQVjV6OyIETeaIZa3P2Reg+/PBD+elPfypvvfWWvPTSS4cehuUkIPd6fPDBB8p0o2Jcv35d9T96HXPF6hP550QqCCXFNVo0fzj8e+PGDfnZ3/5M/u7//p2cO39Opmem1fIU7ttoVrjLlbIaoeJE4L1792RhfkEN5X7vu9+Ti5cuKty9NVcnUi/qmTqxCsIcsiWZmJhQ15+xtp+dnVUd65///Odq3waHaZud7cvCz73lvD6Nyvbee+/J+Ni4OuuK8x3NlKvO4d6LrzlwohWEkmEh50JGvRzl1VdfVSeh1JWj2SVV6PQzPpWBysZffvcUw9dl/kDEn3gF0dxgoWYh56Nds9aDMD1F0Jx6cX9fGAVxE3FPAdy40vMzOXDihnnNzPXeexw4Kgd6CnJUDvbin2gO9BTkRIu3l7mjcqCnIEflYC/+ieZAT0FOtHh7mTsqB3oKclQO9uKfaA68UMO8PLOKa6oqVT4lzKJX1A1CmCKB44xhAH4iFfUWxKRgCA8mBwOYHCRIz1m8q0gZ/CvjHzgmITCH/CEHNf/oEwqE1VPjnz85eOIVpFwtS6lchGIUpFzZlu0CjgbaWZL1nQXJF1ckXtmRWKAARSlB+GHZrkYlL7icJzIoA4lTkkmMSiLWB0VJ4IlKJBRVCvOi6AorlWKliCePt7zkK5uSLS7JcnFO1kuL4BuumguCf8FtaEdIiuW4bJUxIRvsk+HwKRmIgoeRIQkHcBVdICrRUEwpjV/4dyIVhDPkpXIBQoVC5FfkefYeNjbdlaHEczmV3pHLI0EZiIUE/2stCKs9VfWxPkQLgiYkX3gAJSrLIk4znVuJy2pxRGKJSzLaf0niMV7tnFDKEjihbUsJLUQRlUehmpX5nYcyV7gpycQzOT2Qk9OZirwSD0k8HKy1HuQd290qWgm8kn+41wgV0eeyvFWRhWxY5tb7JFK9KNOpVyQTxcHegRT4z8Wi3rbyAw8++fwXyNR77dboLdQ4uWRJAgNY1IerCrrhqBhFKMZ2cVVWcg9wgMMtGY4/lfNDBSgGFaIqQcBQJHwUVbSnKGDKWD8V1JuUN37LeCoQfL4oMp8ry/2NqDwvT0k8fU2G+y5KIjoARWm+KhiY2+fKoG21KIlcSFKRRPvwAhNbi1KlhFYiJyuFx7Jc/kIiyXsyOZyVqYEACjbNJot/4JXin8GzOv/oR76phwoDPpaDsrKNPfxrAXm6MSpReUWmoCypMCqeEFsXTyrKL05EC6IECzNqK0/F+Aatx2cy3bcol87gGuYYajmoQ4jSU8JkLWe9K+VQJcMKqwmWcBQ++yZBKjfgYuGqpDIBOZvCFc/5B3Jv46E8ejYuoeTrMtiPTVPxIdWiIJovHU3RrdKGrBQfyqr8QTL99+TN8aKMpbBYEws0dT9DKuQfs2jxkO9QgBpva96av+y5BaFQ+ANmVmUiGZCxGCqxkSV5tP4z+XrlA8jluozFX1OmWAytstdaZN8rSAWC3S5kZTV3D2bRpzLd/wQmVFXVdmGUcIhGFfBdAVrCrCuHIVyboB1wQBMCvhAquuEYFG+oIpcLc/LNxgIU5SuJ978tg2xR2F/xZm1ITuxxGK6QQnkHivFEliqfSnrga3l7YltG01AM5FfV62CF4t++PCMcgBvAERcrnAiU5fJAUM5lcvJo4xdya/lzWdn5jkykXkN/ZRgK6Z1i6R1K9ohufw/2MzbQ2V7L3UCf4qa8NbNVq/G0YlCwzQq9bkkOCMdKMYI0BiJVeXOgIjPb9+VLKMqzrVdlaPgt6Uue8kVrwlYjW1qRxdJNKSc+kSsTz2V6kK0lRvDIE9WnwIviD7/5WN/Kz3jXYQ2UY7eCquEIoepiZXMRrfJkfFW+Xv1rebh+V0YT78lw4pwkwkkAHr/zpYLQpCoUt2Vt66HsFD6Qc4MP5OqISDICwZKnSlj47YBymLhriiIyHg9IXzgnt7MfyL3551Ic/B6OID0n8Qgu8ay1YccvaQcFpWoR/Yxnslz9SPpHbsqliS0ZStIUhdP808rQYqFv1HLs4iNuIDfwsVVOw3x9fbgKPn4tN1eWZKPwfZjIb6GP1Xfs3POdglA5tgubsrz5lYSqH8qrpxbk7GBNsMqc0sLtpHJQyHRWWlTKFEyHb2WqMpC7CyHn5HnxuzIy9DJMroznlKSAAZTlwkPZCL8vE+N35PxYESapNddjFF6VP+c383wo3pJfiOyGD94siJOJoKTQP/li9Wdyf21DZvq+L32x4WPln6pwQZsvHEeptvJZWdr8QqLB38irE8/k3FDNVu6qcqhCApbxl0LnL1wYLzMYWHo99kRSsK1Xlj7DMHMWvhZADexY/+bL27JQuC3Z6C/l7NRtuTpRPoJyICvMmluhtykR4QDoBqf5h2AWxsFIQN4eyslE5LfyaO1nsgoT+jj555sWhEzaKkI5cl9KMvS+vDK+jPH4CJgK1TCYvCsESyh1AeKF7/qxCdAKcxOgCWe+KzxWPL5bYRTyaYycRaoLcjP7G1nG9/DI62hJ0sdaE4IMYcvxvHhPNqO/lXOTONNrlH0phsA58+78NvJY52GjQu/GJzd8tvigAd80W2Hpyav9eQmtfSJP16k4P5aBOIg9BuebFkT1OXK3JR78SK4p5cASEFfl0IXW+lWC0X4UAh6bAE04hhuwJpz5ThyN4OBPpo5GQ3Ilsiixjd/J0sot9Jl24Ht8jn2O1dJj2Yl+LOcnH8sFKgeHX+mchdf57cozeO4LB9zkUyO4ur8TDgMFIO3lTEFOh29g3uRX6JesktKuO18oCJeKrG/PwoS5IS+NPpfJjHeVo6aAqPVQLiZg118NzqEm/L2srj/ApCOml4/BcbRqrTAv2eCn6HM8kJnhck053ApvvdAiA/i/t0LRftZvw4qC4U2UQ+NWvy5wiB4DEy+nt2Uw8Kk82fhQtkvdv6TV8wrChYXZnUV0zD+VMwOzMo2Z+b0tBxhcFxTfwd26oLUg6WeFMVzD1+GMMCccwOuFRcdTaRhxtL+Bj8ydxpKMi9VZ2Vl6X9Y3YU8TrouOpmmutC7rcgtzN9/I1PC2xDnrRzoMWnfzB+J0Xlzz2CCejWcWDjf8rcKBBppbKSpJYl3S5U9lLvuVmunvIvuUNdDN9A6UFoW7XdzEmp5bMpV5IJeH9TAkOEfh8bEx3PLfVzBGfIXH+D4UPk2L9WsUsBDeL0SrMlW8I2tLn2JYehNA3XOcBNyoPpBY31dyZiSLUSE1kOuuHIpvjXgBmsmrfXlLOAAeBc5Ih5XhAIaBT0eeYOnQh7K0/ax7zENKnm5BKjjZcGPrEdbrfC3nB7fR5FrMJwMVE/FHv+tCWReyEdao0Ndh98O3X7pIq0mBiGGs/1IY8wxbX8ny2n2sTSoDYecdTavN8nPJh2/J2DBOhcxweg7OlVb4ax6Sp3t41jyPNjm44jfkQfyNlEj5m7BVmNYBOYPVC+PB+1gx8QfJodLslvOsgtAU2S6sSbX8jUykFzCJZdV8irluAqQfHsQrw9TPbpZlfrEgyysFKRQ0w63ffQXYZjiQNYjZ6YnSUymvfoYWkR1OZqSzLl/OSVbu45jVJzLZX9v7cnDlAI0kdV+eEQ6AR4Gzxbfji+JzOrolsfJNWcBcU7ecZ4d5uSFnffuB9EcfYqbcuSbIKsAUHJnKXwimWMDS6sW8fH1nS+7c35al5ZKkkmE5fyYul8/FZWYiKqkEFM2Mp+JaOEz/fQVtxdkXjrTV7OnzkPLyzkOZX7kt6fi7WJdkKX0HpM1VuZuV51KN3ZHBzCpWGSAtV1oNHjL/e1oO+hGmGZwVdhS4JspBGbPl68dq7PHAvDzL38ao1jnpi/bDt7POkwqiJgSxsSkkD+WUEi7IVAICMxoIML9TkW/u5OSnf/Nc/ubnK/LoCUeMIjhyNCbjo1F557Wk/NF7aXnrWwksKtRK0hhf8wIBYlRhQvz9Co5Bbxym1ihMnqXsHQw8XJH+5DAQdMblK1uSA/+G+p/LRB8sec0/XaHU6ceLDjNo3fUDfSq8GRzCjqQcSKMen+m54EM4C+tUpITJw7uYD7sIBbkOn846TyoIV+iu52alL/JYpvqs1UwUkk2AlsDAuFKxIg8ebcn//Mm8/MVPnsviEuzWcEwpRwA7AbO5mHz8ZUSKpSJW2gbk26/Fay1JA3zNC8RuujY4JWArjLTyceKH1wz2VCzsPJbnq/exW3GwIyt/2ffIV9ckFHssfal1jFrBklY0GfQ56bXRSvoBq2CsdxXfmacGcE7cOm03fAyzpe2SroVPTSLiz5BAxsVZDPte7fiiRk/2QUrlPJZaz8lQfKVmGrgxUfnVBJTdLMn7H6/L//3FKvodWjni9UOr4wksGgyl5fFCUj7+QuTJPFoXp1Dq+Cyh6+9W4cyauQm9bEWGS0sS23qMTUTYhdUBVwD/NspPkf9FGUmhdJEekz5nAd6TR0RwK8w2OAunE86JW6fthKv740W974OP8fFwX89YOC9BKMjSVudHtDynIJz32NhZRq23iKUkOBSAzLMJxmKoJQju/FtbK8kXt3Iy+6SMe0HYcuwqhz7ZPQElKVfT8mwpLgtLASkWtWBMfJaQmKZ6NIzhr9J1fptwCGtCL/Mzjj3wie2nspydtxLCTxtdObAjlfC8pJMbksaM/sGUA4Q480he2PKEb7cWxpLJboFvAEd8tvjOb4ufGl+dntoEbBpMjGLAYzs/C7IY2DnnOQXhSSO5nWdYI7SIPeQ4id0mGJNxYAo+y6WqZLOwS9dw0kYl3EA5atcfxBMp7GxLY4QrgOvZ0IroWrUuAAN/03QNOI0DXqpgNIxnxcHPEK5RiOUXZH39EUhgxPY5mlfl6ibWfq1IOrZt9D2Qhi5wrrQinP5OXig//NFx1C/+uME5ecHvRnB1f6brAqfCTX8LDl4hIB0J5nDgxhImQXMI6JzznILwOJ5oAMINratO2a5gwBn8d2U4xjh4PA9bj90Wo6YU+putCjvsvP5AHRSgBaR/bcK10mJ6+nHCaQHqcP62oBzEh8EYGSiidi8stX1OpIDTW1aKCxKKruFUFohX0+ek10Yr8wlAZx4ZtxU4xmsFzkYL02yQrqbVRg+ALXowbygjYGK0vCzr+SUg6ZzzlIKoFbuYaY6FN2S0bjsj87rwasbpbzCKqyYyGModHYpIX8bdvKopR1yiEbQwGAXpw2a1OGeUbQJgOnhsgoaHW8Gp02HFcY1HXAwnjr1wgzhmKF3KYqUAjstpoytXC7Iji6gINrDhyBqtc9LRSh735Il5gKeTZ07cKq8ucHV/vKj3BvjqcAy3YDS8RXcAOx1jsDSCqGBKhRVUj2r6E8Dtd95SEAggj1nSZGgL2y71UCy4Qwa5CQIMI2sGMEP8ypWkXJhJouDblUQrRwxXqaUSFZkYzsvYAPoqaj0SImuhE/+egqPTteCa0GETegtw/eB8tLgu2e0VIG+fCwRKkojk8OzUlkk4+dZKHhX9+MPf+oMXhYt+VpgTt4J1gdvjb+Fw4iMc6Wvkr/Do9Cs4WmgFfcn28g/Ybc5TCkJplMpZjGDBvlRDk+CIYhpo1kLRTDIEnYYp8ea3kvLdt+IyjElFXuCpFYO//A4FijLevy6vXsjLaZyLVRO8hV/hdHl3CsqtQBh01Gl0g7PRX5UkD3bIQ0G2aCKQgKM7tsCCfCaiOxj940gdcJrp2mhlGB5nHpUf/vC3/uDFCefErWBd4Pb4WzQ58RGuZeVgZ70qCbSVwUpW8hi165Tz3DxIGRNcVZzLxAp+V4DgnmK09jO/qzggISDTmCX/ox+g4MUL8vk325hHoRJgUBBMjwWzcvbUlrxxaVteOosVonGG2XHs4rf8nQJ0KxC2AmfGM3GTZnw78KkTUopbElCLF9tjInBEp4TD3iIhnA3Jjo6ZRxut7jTV+L0/7XsUD1Hc8ljjqZn3JnCkz8GjvfTs0gb7Ah31IFYLbMkGNtKNhDoz6eopBWExiVQxBwIh15hjMVQJgO94bILeZVgCE3AvYS3HUCYo1y6UMZS7ow59C4OT/amizJyqyPR4ECM7xsRjI3xOQR1FOVzpRcLAGYKChLHHgVfBtWM0iwpSxMaocAgDHSxBzF+redwDx7g1Omt48K5gLH++1x+8OHmmwkz/Bvh0Gm7x3XhnwVH/04pv25Itb8mIvCAKEoYNHUYHtnZAGbigGG0JownDqFw8rmZqPCKnhsKwTYEC51+Ch2pzUDjEfSS1Pou7oK20nIJS363S4YAza/D6O2CsNMrYH16GcKmyyjxCHo7iFA41ClhRxxLV8mnSZL078whve8WDb11wGaZpd+OFG5yOU0+nAT4dtw5n0beHHsPfws35JNSJGMYu44hUlJcOOU+1IOxx1woxOAbzSAlYMQS5b6IcpjBhPEk0jH4INtpUwUE10ahx2H7xUf+23p2CUt8mXDM6WoDTBYLpIj9c9l6FgKnc7XM4bR3I+OzLM9Jh0bLLC/rB87C8UDjN+A3w2dKwYFRcvO8nawuO/ZAoHkyFdcx5S0F0NhUD8MdiREsMY1wyXcfBpyp4+luHuRV6why2QLjiM+jQ6fJXp6ELAEnG005nzzMwMwH96PTrNCFM06JhTDpNONs7cSKCGcd8r6djwdW/dRz8aj/1q/2b4XWEabrZnVSEILwDznMKQr7vMh7vmhHK32KkZq4ppFbhzDj63Ylvj9Ca0WEKtwEc09FpGHQGMZ7Po+6YtXY5oi8hPR4YDdS7BVmnr/PMRA1aajyHpxPOjRdmfkx8Nn8rbSc+E8aJ20YPaCGN9cf8rr0TFY2rEu3oDjlvKQgyXEEPpFzFEhOYHnYBqkA7w/YwH1zSAnMLcxOAE84pNCS7hw7lZ6TF70ZwtgIBIA2L33Agjr5C3IqMnyM6NfwQwB0dOGC6WEZG1EgWkDrzuIdWwJh02nhop9mVFypP+FNPx8RnxjdgnHxuRTZMx4IjiUW8l1ELhDp4FjLrGM848iyPg/GLAeyvdDLMyXwyi04Lk9/6vQ4LT76rB+8KpgEcw1Q8E45+5rf13hSOMDoOfhWsE0+NhgrOny1FUiALcG1wXEITxiU1VaxJK7JqJVqdfp0m+mn6LBiGOeHc8mjicL7X4xOnxmemo/00TUaYjR7DH6+7vGS83TC2kDlcBRFEBZPG9Qmdcp5SEGYyFOR5tgkIGR+aQfV3+u0yyWSYeidcHRZw5rvCZcR3hqlvAzfhDYHU020KZ8bHu07DhqeGl/kr4rj/Is7vZZba4XjAQSQYg3JEZacIs0On34hnTLdemK13+rnl0Q1uT3wTHwJVuOnngtvGGzOOFU/jcMDx3pZltJIFlJe+SAbAnXEeUxAYCcEUTKyUFEowsWxCAQMaCdrGPAOOPDPj6HdnwXErEDacluDc4DTO+q+Vpk7Dhgdh1vdOGaNXOJw5lRhGOWIpOLpTdwHiCrntQgxHtEK0qnBZtPPdSQtp1nRq+hvl0Qmncdf9gb+Oz0iz7sf0LRgV10mPGccRZqO7BkevHEY6y1CQRJhmamecpxSENnQ82ocbjlKyituIdoWHzGtGk8kmw8x3xXiD0bYwy78uUPPbiINXG/5mBYf4nULXdO7BY8e7gdqvhLz2Ydut6jsguB2uynsWCyksgkShIQ36sfGC/pp2613Ra7yb8Zw8U2FmfBMf/HVcMw0nn2z0WHEIo3hq4GgAV60GpRwawCTXQFv5BwpszlsKgtGIZDQtOSjIXA7cMhnNdzpdYPltY16zMIvhTkE7hbYHpxnPeieMevS3/rXS12k4abN9wzyAgLPRjCRxZm87HS/KjAVGsU8mDTOLrTCw29J20Kn56cYLHWbLrzO++d2IFxaMwoN3Gz1mHMIZjxsc6CRZJXbOo2NYZzeKKIzUGecpBWEWQ8GI7FSHcJNqn1pHVa/pKECTYea7Yir+KBgHnBayKgAIs30jjopL/2bxXOAUPtMf7zoNJ22271qc9XBGNuK4TQkz/O10vBiTN8uWSgNohbkiwaSR+TTo3I8XOj8aDlHt8c1vMx0jDSefbPRYcQij/A0cTjgFw/QAirDVcgADHCM4CK+zh1p7TkECGKZMxSelEhyXtR2uF6kxpV6wwSBXodOfzilMBU9/I8wptD044VGPZ73zWz36W/9aeDWdNsEizPZdi7OKwyO2E2O4B/AsANo7hh8C/6LBDFqPQdnMYzRQ0Uwa+eCPptONT3VYvDR6r8c38TngNYz6NcJceLGbjqYRv03hcMchUM6hr7WJ66UzMFM76bynICgwfbibfFvGYGZZhccUpo15ZCq4RUGoxxCGjqOFZfs24RjX/LbencKFt4Lb448AnYYNT2O8zytoJTOTOJLntFqoCMg2uzgGOcZwtFAG+2tAHGnXfNLvKj/wd9LsBqfj6HzavvGhvh1pOPlkS8eMY8XTONzg6unCmAJcHubpTmRCQvEzuM9QLaoBks447ykI+iFhjErkZFwW8/0YstQCBgNszMN3M2GS4QZjlRCdQlMw+MNf9VjvTeEc8DoNJ2227128ZdC8FB+UbGYKOxw7M/oSw1FHg5EZHGowJs9VXw7pazrJM/yvfVvv/FZ++OOEU2GmP2H1N35VuOnngrsBL2oVjoHDCUdaHPRweHehgtUHyRlc7T0DgM46zykIs8v95UN9F6QQmpGn2QN0NJWwLIY7GNuwQKg4SHS/gmPi1u86DZtggcv2bafnMZYZr6UmZWT4CtrKzrCft8RGQ0OyU57ECYQZUUcBa5r5q+i26FL+Rv5NOP2u82n7xof6tuJqGCfuJrzYje/CM41Pp2mlVcDynAXkbStxBluKWx/g4BB4EPtHuLXgIK69PcSDpNwElplJxgZkITiN68IeynR5s1aU3ASiC7bJyDpz4WnGqb8j8YaCM+OYcKY/3nUaNjwmPN41bRYsO5dL8RHZGr4sw8mhAwsLGFt2cZwDlgpdwAmE9+RZ+K5Mpbh8B9EVLWZe6Gd+O951Phm3XS2H5ovC6ZK+M00Ljq3Hs3JICqlLOHHz6r6H7hWx3WFuYV4+v/ml3H3wQHbyOzineFCuXrwk165cxR2S++8h8aSCgGUSCkUlk7kki8v35fb6Z3K1T3c4LQESyMZoy7/OXOubzLUVAOe3Gc+Iw3h1/KY/3nUaLeOt4bqLzvmTwTMyOHYN+UOB7aBjK5IMj+MIpYsY7FiS8dimtUfEzEuNLvdKxMgnXtuiHAoPcRmPjYcIMMPq/Ac84PJoPRYj41LK4NjW+BA8G7vc1pZ88tkN+cv/89dy8/Y3OMC8AJ6HJZ1OyadffibXLl+VH37v70FZLsOkb6wGjUMap92VENWKgAnr8ZdkYXtepovLOMwBJokunCbz9LtbmE0AIN32bQlExXMIxwaHeEpw+KPTcIbbvk28jIv7FTExuJg6LeVTr+NA7ZGOth4UECcfk+F+yYQvywKukEiGvpHz6Rb22Djzafu28mXzQ2JO/jXkhRmf8cxvvGveavzqtwbHrugdtB7rfS/hIqVXsECxced8e2dHPrv1pfzFX/1E3v/kY5xzUK6fUZAv4sT/tTX54puvlcLEYnG5dO48EnF3nTGC3dM6sG8YY/pDfZfkeeCS3FrHrrs6Ax2MJSPdwmwCIEyjeKZ/AzgqoU7DhqcBvIa1lPc2Vik/GbgsI2MvY+6js60HKFKOrUg6ehrrs16V5e2x2rA5eaUeM8+O9zrthEWY7dvhp8KM+DbeGP54tbUOTjhbGkY8wBH0OcKXkhclNfSmpJoM7XLr8srqqvz697+TDz/9FIM8JYnhpBs+PMBDv5dRmJ7MP5Ov792RlbXG9x96WkHYoUrEUAsOvIFx7wtyb6NgZ7JV+HYFaGdsU4FQYE7hKj8Dh8ZvFhKbYInDBb4u7FrYQ6wro3IMzXwXh0r0d7z1AFV1F8dK13TkoiwVLsnDzaTkWRWTZgeNdaWp+wOFmW9XXlgwQKfiN+KF8jf45IRzpunAt43wuxx0GLguE5nzqnWsZ9DxQlPq8dMn8mD2EYa6i/WWQx8gaP4WMXrxDH0UKlQj52kFIdEh1IIZmCaVzFvyoHhanm9j8lAx0GJ4nbmNBAAkToEwvopnxKFfvRCY7wjQadjwNMO7G38ZynEnOSn5qW9jYnCqo3eCINU9jqYqZ5uHYm/Kc/RHnmxiiFTlFaDO/Op8al7Uv+Hh9HPyz8YbDc80HE9TOCOeBUd9vol5o6W+67h89G20hrxKp7GjObW5lcP8T6HeaphKYR4HxVEtwrLzzlP/3ZznFYRER0NxGey/hP7Im3IzNyAbeSyhIOP3CJB+BpMVjPltvTuFq+H24EOA9msZL2iwCt4mhPVVbFjWznxXRk+9LJFwc+EiZkdcOBCWwdgZHCb3rtzZPCMPOHRuy4+RT/KC9Ot815XI8HPyz4lL4SAeC5f+doPbkw7iWHDY7iE3QeqzvjdxKs2PmppWiFV3NLPYIacyNFKOmrkVRwXcuC9DhJ7tpNdzixdlamFh38jIG7JUycsfsr+XN1Kb6ICy0wkuugoAERsKxIjDuK5wBowtvBE8/BUdtXg5KMenWM7+dOo7cnrqbSzCzDQ1DRC7oy6CUcHhxEV1btbdLEZ0Kk9kRl1rB3rrhRQktEM5nApEvth46JImYQw4knEbpzE8Sl+X0xP/SAbioy3xLxQKYfQzg2NoM3taELP1oOJEwxEZ6B8AXFwl7SYAX7QgJJymQjo+IKOj76Kz9h25sZnGJJjVkhiMdVcWACgYCsF657fyM7/1u/VLQdsE6/w24PCqcWehHB9jE8+TM9+XibPfx56P7vY7QMkep7YSYAfjeOqaRGN/Hy3JlDzGvSpeVY4vYVt9lX5dTk3+ExmGiU35t+JiOEVz+vSknDszLZl0pt6COJWDQ7s8pnZ6chIXnI5AdBTgXtdaqnvjHYsPt5SmcCvT8Pi3MWT6fXk/2yeL7JPYakCQZivUZiG23lVhbgSHwDq+VuCBR+Grwa6iz/F+ZFCezvxQTp/9gaRBrzpN/lg4Zk+0piQpKMm3JBj/kfwhNy23YW5xAs4rLQdpuQGRfpN5R6bO/IkMp6eaDunac1izNoYGh+S7b7+D85qvqtXSTuXgCf/scwyj9Zg5PQVFajwjH/q3/+pf/wskctaZ0FG/izzQK1KRAI75POj0frO0iSuC69WiWA27XM3I3MaKJMrruOCRG07hWlUOW0uiFcH6bcVEAKhTkWahHL9PnpbchT+CWfWO1XK0uQ5iuriPMVIMom928OFiKkkYWwrSWCpeDYzJU0yo5XFKen9IHzZn8EJXFE5+uPGYdNHxVz+N4FQ4/jjgsuDfr8pReTbyQ7k69cfSj0WrzeY7VHouf2hm9ff1y9DAgGxtb8nq+jpazdrVGGwpqmidZiYm5duvv4kWZApK1LAf8tAXfRAnD1gjJ2N9Mjn+pqxh6cZv538pz9ZvyRu81gAjE2aNXivEhjAolEaC0wXCpjwN4A3YbUwC3sBJIneGvyUjF34s40NnYd8m2loxOHlwlG8qCQc+TmHJRiyUkdmNUVla+1BeSWzIeNQqEjp/rSiHE8aNxxqfUgpDHpAF2X0fo04fh09L6vQ/lldH3pIY9uqTzsM4VqJJ9DFeeellpQBP5p5h2HdWNnObMjYyKufPnpXxkTFM2CabKYdKOvDgk89/gQL13mEIaRZnC53pXBJHfw7gGvjg4TLaDL8OK+PYyRyuEJhbvCGBpV/L9dCSXE7Ea6xtRXBKYMCmlUb/Ov3VN/7w1xI2a6P7Pj/0KAAAA7pJREFUWHz4SWxMKjPvyfjkdTB9SA1Na/ra/ouhneoqTnDPYd9MJHFk9DzPdxtXTsxvfiVrm7+WmdBduZqs4txbDoAAvVlZ2Hhj8sJ6V/CI44Rrohxr6K99WOYw7rtyYeIfyBD6G/sN5R4k0xXQX0YaJcyJcC0cW5cI+h8tLlz8hS9bEJNBap4ESzfiZ34g65iM+3D+Q7m59rG8EdmUGdwJogycRoKjv1Yi/athVRj+1L+td8BR/rOYkPoolJLc1Pfl1PR30KRDsFim305z0sxnp97Vkh6MsJ0dvC4bWEI+u/ap3Fv5nVyKLsgVXCuRYueYPHAWeuUHf1OB3OAaKMcqZri/gJn4OHFNxs/8WN4cuIJT6RMtd8Zb5Qf7GkEoBJXiMO5wsQ6TUgfj0OSiSTM8MCP96VOyln1b/t/8RxJdvSHXAmtyEbdJZTDhuKewU6AUcIvKQRv5Dp6b4SEpTL8pk+hnTGVOSRj7OlodZekgGw6NmqZMKIAhz9i4ZMZ+LGv5N+QhFoh+ufqhnAnMyrV4VUbYsdX8Ur9Wcvqdv04lcigHO+CPULF8UY7JSuoNmZj6ARTjMhQD8xGYq/Gi872J5cZUmg3lMq4iy2exGviuLC58KsncXbkS2JQLmDsZwiRSBDXLbs0I6ZqCtmrFIswZ1nT30am7HcSwcv9FGZt8C/brRQwRZtBco4ViDdtN12YTy410mo4lXKNQLO/IfO6x3F/9SILbN+VsaEXOYeBlDLVxAvkO6NZjTwVT42cF/lnw7ykOj7iLzvcs+hiDw+/IS0NvSCo2CPs/hoPuvKkYFl9+cSIVRAudgq5gNI3KUsRdgJtby7K8Potrox+KbM5B6ItYm7SOBgR9JdVrwfUIlRAEl5FqYlyC2BY7OHAOoyFnJJ0axr1/iZpSYPb1sB1ITduhf7ugICZt6tbcShErYvOyWViTpe0n2KV4X7a3nkgl/0wKlWXcVIFxWfKP/EYrEZUkrqI4JdX4KRxrhA4x1k+NJE7BLy1BVCoRtFY+MUX93wcxhel8pxDYdLOfwsKd4BzK4DkozffRN4EysKJTCsRrCDAkjVqRSw8CGAmrIi580EKE1Pop4jo2pXBmrIvfHGZlx5ajXnFMfg5hXdnF4bfAC1yiCf6xAiphoIT8YyPMFcTKXFL8I6HkKTrFbHHwz2/O0+1bO5mpijeEFuSeErHPH7wwTDgiQ1nIayblLsc4g2Dn5hET8Vj0LhvQHst9j5weB/bhAKuCdTzL+8D1gnscePE4EJCN/w9a5ptt1S/vMgAAAABJRU5ErkJggg==
Suche nach Exoplaneten mit der Transitmethode.
In diesem Experiment wird die Veränderung der Beleuchtungsstärke eines Sterns bei einem Transit eines Planeten gemessen und somit der Alltag eines Astrophysikers simuliert. Dafür werden Analogieexperimente, wie ein die Lichtquelle (Stern) umkreisender Gegenstand (Planet), genutzt.
Für die Messung wird mit dem Lichtsensor des TI SensorTags die Beleuchtungsstärke [lx] in Abhängigkeit von der Zeit [s] gemessen. Die Gesamtdauer der Verdunkelung (totale Transitdauer) und der Zeitraum zwischen zwei Transits (Umlaufzeit um den Stern) wird mit der in phyphox berets integrierten optischen Stoppuhr bestimmt.
threshold_lowthreshold_highamplitudetsearch_asearch_ttrigger_ttrigger_laston0on1on2on3on4on5off0off1off2off3off4off5don0don1don2don3don4don5dt01dt02dt03dt04dt05dt12dt23dt34dt45resetRawIntemcountItmaxfactormax_amplitudemin_amplitudetransit_depthR_starR_planetQuot_Ravg_transit_timemax_tavg_year_durationTransit method - SensorTag*Astrolab University of Cologne
Search for exoplanets using the transit method.
In this experiment, the change in the illuminance of a star during the transit of a planet is measured, thus simulating the everyday life of an astrophysicist. For this purpose analogy experiments are used, such as an object (planet) orbiting the light source (star).
For the measurement, the light sensor of TI SensorTag measures the illuminance [lx] as a function of time [s]. The total duration of the eclipse (total transit time) and the time between two transits (orbiting time around the star) is determined with the optical stopwatch already integrated in phyphox.
IlluminanceIlluminance-time diagramLimited by the standard 800ms refresh rate of the CC2650.Measuring durationMaximum illuminance (without transit)Minimum illuminance (for transit)Transit depth⌀ Transit duration⌀ duration of one yearResetTransit durationMeasures the total transit time, i.e. the time between the beginning and end of the star's eclipse due to the transit of the planet.Zeroth transitFirst transitSecond transitThird transitFourth transitFifth transitNote: The ⌀ transit duration is only displayed after six transits. The zeroth transit pass is neglected, because especially in the case of the hidden measurement it is not known whether the planet is already in front of the star at the beginning of the measurement.Period of circulationMeasures the time between two transits and calculates the ⌀ duration of one year on the planetYear 1Year 2Year 3Year 4Year 5Note: The ⌀ duration of one year on the planet is only given after five years.Planet sizeThe star radius is already known in many cases. For example, it can be approximated by the luminosity and temperature of the star using the Stefan-Boltzmann law.Enter a suitable star radius hereStar radiusUsing the results from the transit method for the transit depth, the radius of the planet can now be estimated.For the planet follows:Radius of the planetSize Planet relative to starTrigger configurationPlace the smartphone at the later measuring distance from the light source and determine the maximum luminosity. We now define this as the luminosity of the star.Maximum luminosityThis is the recommended value below which the time measurement is triggered and above which it is stopped. This way the total transit time is measured. After entering the threshold for the transit measurement, press Reset and start the measurement.Threshold for transit measurementBy default, the stopwatch is set to measure darkening. If the time between two light flashes is to be measured, set the upper value to zero and select a threshold in the following field.Threshold for brightness measurementAttention: for the transit experiment it is important that this value remains set to the default of 1000000.0 and only the threshold for the transit measurement is varied.These are calculations of our model star and model planet. In reality, the dimensions are much larger: Earth's radius is 6 371 kilometres! The radius of the sun is 109 times greater. For the size ratio it results that the earth is therefore only 0.000077% of the sun.5001
RawInt
e
RawInt
2
e
factor
m
RawInt
countI
0
tmax
countI
amplitude
amplitude
max_amplitude
min_amplitude
R_star
transit_depth
R_planet
R_star
don1
don2
don3
don4
don5
t
dt01
dt12
dt23
dt34
dt45
0
0
0
0
0
0
0
0
0
0
0
0
reset
0
reset
0
0
0
t
0.001
amplitude
search_t
search_a
threshold_low
search_t
search_a
threshold_high
trigger_t
on0
trigger_last
on0
t
trigger_last
0.001
t
trigger_t
amplitude
search_t
search_a
threshold_high
threshold_low
trigger_t
off0
trigger_last
off0
t
trigger_last
0.001
t
trigger_t
amplitude
search_t
search_a
threshold_low
search_t
search_a
threshold_high
trigger_t
on1
trigger_last
on1
t
trigger_last
0.001
t
trigger_t
amplitude
search_t
search_a
threshold_high
threshold_low
trigger_t
off1
trigger_last
off1
t
trigger_last
0.001
t
trigger_t
amplitude
search_t
search_a
threshold_low
search_t
search_a
threshold_high
trigger_t
on2
trigger_last
on2
t
trigger_last
0.001
t
trigger_t
amplitude
search_t
search_a
threshold_high
threshold_low
trigger_t
off2
trigger_last
off2
t
trigger_last
0.001
t
trigger_t
amplitude
search_t
search_a
threshold_low
search_t
search_a
threshold_high
trigger_t
on3
trigger_last
on3
t
trigger_last
0.001
t
trigger_t
amplitude
search_t
search_a
threshold_high
threshold_low
trigger_t
off3
trigger_last
off3
t
trigger_last
0.001
t
trigger_t
amplitude
search_t
search_a
threshold_low
search_t
search_a
threshold_high
trigger_t
on4
trigger_last
on4
t
trigger_last
0.001
t
trigger_t
amplitude
search_t
search_a
threshold_high
threshold_low
trigger_t
off4
trigger_last
off4
t
trigger_last
0.001
t
trigger_t
amplitude
search_t
search_a
threshold_low
search_t
search_a
threshold_high
trigger_t
on5
trigger_last
on5
t
trigger_last
0.001
t
trigger_t
amplitude
search_t
search_a
threshold_high
threshold_low
trigger_t
on1
on0
on2
on0
on3
on0
on4
on0
on5
on0
on2
on1
on3
on2
on4
on3
on5
on4
off0
on0
off1
on1
off2
on2
off3
on3
off4
on4
off5
on5
dt01
0
dt02
0
dt03
0
dt04
0
dt05
0
dt12
0
dt23
0
dt34
0
dt45
0
don0
0
don1
0
don2
0
don3
0
don4
0
don5
0
t
amplitude
max_t
max_amplitude
min_amplitude
transit_depth
avg_transit_time
avg_year_duration
don0
don1
don2
don3
don4
don5
avg_transit_time
dt01
dt12
dt23
dt34
dt45
avg_year_duration
transit_depth
R_planet
Quot_R
max_amplitude
t
amplitude
on0
off0
on1
off1
on2
off2
on3
off3
on4
off4
on5
off5