Corkscrewing 2 Acoustics Calculate the speed of sound thanks to the sound of the wine cork blue iVBORw0KGgoAAAANSUhEUgAAAMgAAADICAYAAACtWK6eAAAgAElEQVR4Xuy9aZBc2XkdeO59a2bWllVAYd+3BhpALyR7484m2ZS4iKRoy7IV8kxMKMaaCP2bkGlLYoRjfs2PiYmJ+eOYmD8e0ZQ1Do0lWZZE0RIXS6LY3Jdmd7N3oBs7UKglt7fcO3G+e19mAo1CNwqFYi8vyWoAVZmvMu+7537b+c6n7Bf2W9SPegXqFbjhCqgaIPXOqFdg9RWoAVLvjnoFbrICNUDq7VGvQA2Qeg/UK7C2FagtyNrWrX7V22QFaoC8TW50/THXtgI1QNa2bvWr3iYrUAPkbXKj64+5thWoAbK2datf9TZZgRogb5MbXX/Mta1ADZC1rVv9qrfJCtQAeZvc6Ppjrm0FaoDcZN2sGv1QCaWT/6m+qp9p/xeF6vnuufXjrbACNUBWuYvc7AYKUJb/h+K/bAmAX+MPoiiEVdo9HwAhU4PkrQAP3sea7n7DO0mAlIqwAAJroVFCoQAsv0MTUZkXgiiAQQij+D0FzefXVuQtgZAaIDexIOMAUYoWxEINXayR/0X4EBz8aQ2QtwQuhh+iBsjrBYhsf+v/68DA/9Kxcj+pYpDagryVIFID5KYA0QIJuky0DRKei9slUYbEJdoy8vDAEaNCgEBeUz/e/CtQA+RmAEEAqBEIuPlLCca1wINhfGAZmzAucUE6AVQD5M0PjOoT1ABZDSDMV6lANn9gCwEDAWJVgFIsiBZI6LGfGQnWAxeki72pH2/2FagBsipAFIzSKIsMETNYoQKshSkBAkHrEGUxQBT4nG5pgLDhQGVoY2qAvNnBIQ5znea98W2UqCMIYfIMgcmY6xWrYel26QiKsUiR86+u8JEXQJCgtLoGyFsBGf4z1AC5iQWxOoBm7aPou/qHDmF0jNyEgNJAOUCiS4lTUJZAmMKoCBALQpesfrzZV6AGyE3uYFEahGEA2Az0rSwi5CpFzwSIkhSByRGXHShaGMYiOoKldXmz74r6/dd1kNezB5iV0pKsysWAlEEDmNgMTG3G1StXEZkBWmYFIQYACtjCyPOUdjmu+vHmX4HagtzsHoYRbJFDmQKljZCHLYRb9yM8cBzPfff7iPpLmDIraOk+otAART6ioNR1kDc/Ouog/eb3kDWNcjBAGIYowxTdMkWweR8axx/E4pUl6O4y7OVTsItnkdoOgnKAIGTcYgDD1HD1eL32ZDzz9Xpf85bYh2/YD1FbkJvcGsO4w0hlA1YnyNBEL96E5OA7kB66H2p6DvnyArKzz8GeewbFuWfQyK4i1gMo0wOCAChZVmcuWMNKHKOHVF9x3/gQa8NqvBlS5qXmIukxPn1EjKz+Lt+p8CTU4TopcCdQVgPkZqvKkjh3Ykb3CbDRNPrRJgSHHkR834eBLQeQIQY6CwgvPYPek3+H/IXvIBmcR1yuIGiksIMMhIXkgq1BEIaOxyXcFStfloVFkh0VeV384oMpZUd+dCBy1XsCxP3pEULwMIvGr7r2su4YqQGyypJy33HD6lADhYXt50AwgbK5FfrYI9BH3wvM7kc/npEtnNhl2DNPwjz3XWSnfoRi4WWpwJdZF2kEBLqEHXSgAwWlaUV4XYWchUcbCnACYQxnw20+atgaMYUryDiAGAHOEBi1V1YDZN1XYFWAGGQmRxAohEEE9AuUKkZPTyLYfgzpQ78Atf04bLIZHaOQBEDEbFb/MuylF4CXfors7CksnH8eSb6Elh5AZ8sIkbkNHYSAYTVeobAxdJggVCWUYUbM+04epAIFv/ld85an3VfNjWKOHIGyfqzvCtQW5CYAKWGEThIzm1VaqDBBJ4/QTTeh/f5PI9p5ApjZi4GaQKZiRFGEGBlU0IfqXgKunMXyE49j+fkfIV4+h5btImXdJOsCrK8wRrEhCnK4VICQrlbJ4N67dgIQOl3OmvH7Ag6GNeJhVXEH/yWcl/XdHfXVaqrJ6nvAAHGAotuRugaMRZA2URACegLl7G4kO08gPvkB2PlD6OcJuoxHCBKdITYdxJGCuvIy7OmnMXjuh+g8/2Okg6to2D6U6QOqcO6WtjCk1EtR3ve4e+tBy0GQONDQpXIwqMIjZ2xq63GnsFxbkFVX1meW8gwqZj2EfCwG2BFs0MDVLEI+sR2b3vEowuPvQZluRT+aQZ62UDK8yPuYDhWCsoeoWIE5+zy6T30P5fkXoBdfAVYuQmeLSHUGrQsoVuIJDhsJAsRyKOuzWvzTu13Sa6LG+t6rGKQmR94JkNQAWW1VJXNawrLfI4lhi0ISsdyxFiEKJFgxKaLtR9E68W4E+++Hnd2Lrm7BhA3k3MJlgajM0AgMtOlDdy9hcOEl5GeeQfHy0xicfx5x7zIaBJEduI4SBu/SvluiJHWYgXugfdZLkr5iMSTdK+lhZrd8wF5nsdYdIzVAbrakvhrORJHrJvSujVUocgsbtVCksyjn9iA99hDCI++QLJcN2ihUEzlrKGEIFbArsZAAXdseVPcyzJnn0X/5Z7AXXoK++AqyK2cRZItIwkKyWVRPsYaVeZdJq9w8AQ9BSm+LeCVASDyuw491B4ccRzXdffV1dU6WkkyqC5QdQKQFtzRQSRMGERZsAr3jEKZOPIRg371AczcMZjAorKuFhCEKaxBqdhvmCIseVNYBBsvA1fMwr5xC9/SzyM7+FOHSi4iRI9QGAd0qM4AqC1ibO0shYLVg+4mAIwiggwiaBcn6se4rUAPkJnUQ10JbgcO103LPBiz4WRITjTRODaIUy+EEom37MHn3w9B7HwEm9qLIjAT2JojRG+RQQYhAa7EmusiFDaxoJQZd2M5VmJd/APvcNzG4cg79lasIih4SDBBZPtcxhlXoGrSkKs+APQqh2JSSjUsRrfs+edtesAbI6wCIO7PdiS1iDQQJY4RsgCgMYJstdEugEzSR7DyG1v2fRLj/EUi0HqVCUyn6pMPHUEE01EeRBJbWsJZM4B7C/DKw8Bz6T/8Il557CoMrZ9EsO2jaARroI7R9CeiBHCgzFGUuVXiFACGZxnWad92BXAPkJkvqqB6uMCdlB/kKBCiiZiKxAt2fArmOUIQpltPNsMc+jk0PfhphOgEEKRA2harCvxeGdQ0lLbwq8NaJkQatkukhMitQy1eAK+dgL5zGyktPYfGlJ4QQOR0WSGwXocoRqELSxJaWTGj5aQ2QdYdHHYPcfEmF68FImA5/Va1mlokFPnYYcmc718dqDRM1cDVs4+ruD2Dno7+GpL1VSuA2YqyigSBGZsi9clwsfmlFHpZ7G11jaBvQ0kBMa5EtAqefkhpKduZZhItngM4l+X6kMujASaHaksoqG10oHDIl/RpW9X3nilbxmztjmHF7rd1bMc/8K71In1ua6sXX/87Xuubt/7y2IKut4ZAMWN0f3mT2o3Nn+yo2Ke2MB1gfCSL0jEZvcgd6Rz6KLe/+HKLJWZgsg44aKMFqeYRC9H6piFI5RORfGVFmzJVGoZW0vydlgaQYAMUKkC0Bi2dgXn4axeXTKM49h3LhFUTZCsJ8ANgewtilld1m8mk3IjDUAiDaGRelEJzOTXTM4IrD4jYi6y3D7ThGb3GupW8Ek/TZQBrJSJehhTQ6RddGGIQNhFt3ApPTMDqC0QyaqA7jfucQOGPr7nSPC2iTQXeXYK5ehF25gsQMkJJ+Y3OAX3IBUSqD4iElBxXPqkoV2VdRBZPSuSYMBFXxdK5xQcc++zV7oOLvuG/WAFn1kGEGyd9ROZ09wVAWvvQttlzkAKawKJIpdIIUwd4TmHjkV4Cd98EYhbIsEccJ8oKnagQdxsONKjUO3kQBzUjxV4gjUofhnqWVoCvVB8oVqP4VlKeeRO+5H0NdPot48TJM5zyUIpDY3agkrmGPvLhfMd+7QUkQCjg0AlFecTrcGtzAfkORS6wdm1iAMgSIB4ela8k3yn6XFaDMgSKCSefQDWexHM5Abd2P9ns/gmT7XpiYCYoUSkUiklRR9astOLq+A4HKV4BLp9F9/ifoPf9j4MJLSAbs3OwjRA+gVSU4RSkjcCDhbcpy6EDMuQNRdfpULATeR+8sV4eHEpLnDXLj/oBwMCStpxavXgUijtbhvvxpJX0hXsSarhXXOGyIl5VFEzATc0je+QEExx5DOXPYxSvKIhCJIN5JJX+X5LE7wsU1cz0ivNnVyX4tc52xvhGaCcuPGVTvCnRnAaq3CFw8j8ErT2Hlue8A3QUpTJIPFpUsPGawrMGUAymU2IAnaghrNYzRUAWtVVVodFSWivM1PvpB3pdYpepPnhdaFFy6RQjbnAM274PefhjpkXsRbt8Pm04jCxowKhYQ8lM71XsjiQXJDnpxcN4AioMj70IVKwjyZWDxLHqv0FKeQ6QL6OVz6P30cWFEN9KYfAZJf8sNyshycEr8DgeOrkNXzyXq/fMqi3n9n5UbOJSP5XuzIlpeA+RmFqRyNkwFENez4Rac1JASiJqwRouYg52eR/LQh4FDHwYae5DTpZIqXgCtAkTU0xL3xCuh8LSWPhCe8o64qIiGMU+B3kFB6gq/pIWkhCp6aNJ74oYYDGAXXkF2+kfAlTPIz59G78ILwPJ5NFQXrZgbhG5YDjaAFSUNB3W9IgSIRwCRZvqqr2Tc73fbd8j5shTHi7CCFpZtAys6xfS+w9h88gHo7fuhZrbBJtModYrSbeOhDqXI7RnSavj5+bmd6DeF+MSxM+7wCchDoEUpewBdyHIAe+F5rHzry1h++RmkZQ/hYBlR0UEj9nGgLBrX1on68RBwLiWttF9vsX7VDR/12QwLTJ6lUD1NFP1rC3KzQM5Jiro8FjcxHwSI+Cawgx5UzPRqJBsijycRH7oP+u6PATOHYFvTMHGKnNR2AYhGYGgJmPKlO8OTlFkxbqIAYvZFV+vaoNZoAtAi5++m+2QMQlOCbfA6cyliHRsgX4S9eBr953+MzqknYK6cQjS4DPQuIwkKoeQz/pB4gm6HoZviXQ3PFnYxyDhQ6BpVoHXvb6AnoPa9G3bnCZj2ZoSbtiDavB02bsHoJqxk1Kp1q1bNmePIknbjazYSIyg5REb9kK5lzDKZwTqTobtZIi4XYa6eQnn5JSGA9p/8DlZe/DFmwhxpRGmmgXN9/b0i+Cof0X1kn5P0TWrXZA3kuQ5Yoy8CjmCuXaybIIQnvFto0tHdyc58VCkmveyuIIhSQKcwOmGlAqY5j3TnA9DbTkAfOgZs3YmS6V2/KQkQUYTXCgXvvgSw/K/X+/Vu9NC9E5fBhSO55Ak0itLC5gaJChEHTl++x6A+MAgZ1Hcuwy6dAa68BHP5RZz73t8iypYQll2ktkTCzBlPcZ7YBJwHvrh88lWF9NXS8L25GIJgWQlm0PjAbyA49n6gNSVvsIgbGNgQpQ2RhLEcBtWMFLorhYdAYOnWjQLkqhDLM4HsAGKHb6kKdUgQoGFIUCLMlqGyq9JzUzz1HVz56TcRL52RQ4CfO7QZFF1gubzLOjqhcR5uBAilYt0hd+2jOgArjpt/fzqrAXIz+8GNUim5V0VC1j8EIMqi7PcRRA13N4WgGKJrUpzvtGA3H8H293wEEyfuRyedEtGH0AYIjWViSQ4s700JQBh2KgmxHRDdPeR/iBj+1wi3SxqtRDPYMXr5VViLPjW8+DZKSqXmUJrFxD6wfBHoXED50lNYef5J9C+9jGiwjNi4OCU2fcckFvSPoVNA4oqjjhdZ/TaFxXAWk5/+bcR3fUjeT1YYydTRyhrLT+G2pPdx/MnOT+DjOd9rL9i/Lv0rBtaDhAlDARCNoxgHfkZ+8bMtA90LwJVTyF78Ec5//c8wYVaQsulAZ9LB6VJ1AQoTSxzpVPqHgaX83FGIqgydhiZS+SWvrS3IzfAhJ6nzdnyNgTRzEabmUVc66VG6WEUJGyawOsXAJFiybUT73oH2wx8CDhxHL5gU9m9sAwTc43QhNJAHzp3hyUYiPd0sjnPz8bv3AvxpR0DxJJaUMDHjNIDdwCsrZEZNcQjJMBkwqUMwo+ixqR7oXHFf3QVg8SKyc6fQu3AK6sLziIqu24WMb6QAyiQCgUcfTqHUAQyBSXUXBVwxE0je+avY/K5PIp2aQcENzF3NWEv+5zlrwzwRG/qdW0WLzMFEQ9s0npkVsIwqHxUhc5iVqkIhvqbMJEZR2SL6F57FC//1jzHRv4Bm7xziwRWk6CEKHH+tLHigcL0Y4/DFSgqzEv/patYL4yOfpavSwtKGULtYq4fpktUZzQPhcSYWRG62z3LJq30Winxd1cBSNI/pR38Z0aF7USab0E03o0SKBAEiK6UJAYgLvAmMwg9PcKe0WIehFXFvTxyEkVs9ymbKgVjKhqFvIurzzFJxowZO+I5AEh4XLQVVIvMu0FsGOhex9IOvIuheRr7SQbG8hLLXhc0LGGMQpQnCqQmg1YJupYinp5FrhbMLA2DuHdh18kNozs6hYDaJOsaMlVwyWT6FwJ3gFUPoU+aBRSk57KoqMwqaq7qMs1iu5uKjFSdf4boN2MovCQteNrSluI7oXURw+UX0fvpNLDz9OIKVs2ipPqKyh5hCfgREvy+Ap1tZZrn0+dBVrsZZ0Hq4+M+3EgR1FuumFsQVziQPMrydQjGp/Nhhen1UZS9UgqWgjalHPobw8H3A3F6YxlYURYpQpXID+Gxu9oKqQHIx5pXoQ/jj1Kd7+SRuFAdAJRu++pWyx6rz1lpRoRc06NBV9aWM4zZlJBvEnc1Cj7GliHKrbAma/K9sGej1Ya5eRf/CBVy9cAHLS0vYf+gAoh3bgfYMU2bSJmwTpo1iDAYzSCa3g/rF/ayPiN8PAgG8K0c6N0vYz+NxVVDA0P2rDpZx81DVJaTnxtdjx9LD1SemBWI8Vl0lMCX0YAWpXYG99CK6rzyF7NJLwMXTKM4/h1ZxGSn7caifLEmO0on8NRKg4PtxsZUkI8TF8k1oNUBeEx8ufBUz7FuVqqKTpEXHa00ua0NnqacaCPbchcHsLqR7jiPZcwJI5oFgynUMSj2Fgb+F8RVBzj9EJYQtm5/ZLOd4uS5DJ/czxOSYa+JqCv6Qlut4O+T7WVwawD/8c0WuyxYIyr6LqXjhPAe6HeQrK8gHPTRaLajZaSCmar1BYUqUoUZhFJrRNDRilKUL6AOaRTlM/DE/VpYYpq2FXkM3h8IV3vLK5xvFN6M07MhiuHc/jjJ3aLnRRVxHl7sKzQBB0YEqO1I0tWdeQu/Zx7H04y+jObgi1juhVc37AL9SxibMKPqjhvUupvSrtucaIDcByFjw6CSAPB6GCZDRES4/q55vFXIDKZJdNAEm9x7D7F3vhJrdC0xsAeJJR2CsskdyWFVIk13rzkzGEzqF8NtV7P7NlPAwLeuCSwk7rUHJqrbsTZIgaW1YniMlo+Lre1fNI102FYN9H7jakk1YpGW4OMTtX1fDoW0TGDBzx4iGCQEv0h0oJcZFoMvXDzNI7r1JdmpI9BTegfRjui3pFlZxY1ZUguuC9qGfxZS4bGS6PQS00xMTC89yEBkLUSTWsch6QJEhLgro7ivoP/sN9J56HJ0zr2DCDDAVlNIKDcZeYRXMeypRBRL5/LWLtTpCKje58mOqQ3jkPstr3U3jgxvLcYXcmASN3qCEnZiBmdiEAU/c1jxUMgUTJn4qbnWKuptTDQLVTJFyAwaeHk/FlLk5TB8+7CrujuXoi21uk9lCQ5FaH7K2EXqOknPPKCk02oCsZLtNwSp3JgGsI0/KOe4DdAJLcMID3rNu+BximdZH9hFjAGkiMygo0aqs0P8d+9KRFlkE9Hk/WSXHhfa5wcoKjrdsOgz4WP3aQ0hcIZdUdiD2LclV8p2HSGnYTEYCaIBQxuF1gZXTKF56Ar3nn0LvpWegF06jUSwiKhYRx3wTYy6f5dpV1KI6SL85QMZVda4HSMWfYsFPfPvSZY14nHGYTsgAkGsdoZ8Z9JhmTKZgg1hcA3c6jf0CS3eK33MZJOnx0LQArgbhtoWzEMwklcwu8fTkcye3YvvDHwNas0A6CYQtIJwAGm2xWNYGw3qHsQUMA3oW1XSArIzFStFDcsOyeDIbGMMWYf86sUK0VG7jiuadr+wLk6s0yAYdxDFbg70rNByLzcyWAyFPk6pKXQXdsqzDzKsvekhfvv+2N4BcA65Elbtwjp2fD2lzlHmGSAfCM5NTi4eGDuRrYXkRM4lCuHIRg58+juzpbyO8+hKweAqx7iIg00A5WVi6tcwkuoOuBshrWxDv8XifYFSA9T6XvRFAHGKc30yOkG+PZa5K9pi4V86L1p405/ioXvfKeOq37Aaf/eFrqKM1zrHzJ3rfNrFQtIDJTdAs3E3MobF5Nyb2HAe2H4SKNkGl01JkNFIg5IlZSLuuWBC6WkrJW3V8AVdUs4UVsqVIo2p2QwaSNCg5ik64WAYpyZD8tykQBBaDvCcA0nyvzk9DICwBb+k8xaSSTnUAqeIWf2BUMZWsF6HgwCEayY5jWVWIPDXFpckFPtXv8ZZkwPRHHEk2rSl1oXPAylnglSdx9ftfQ3HpJcR2RdoLIn4GSeF71IrrXKd5bw6S6qdjce4oUnY/dMQ+d/qv/qjcjvFnMCNWEetGR2m1meSZLljwR3elzsD6B/3wUuINqyKxUOw1oRIkN3JehOjoGSxO7MHmd38O7WOPoEzasnmjQCHLO4hiMou9O/Gqop0jwNzw4ddi6Al5UFWm4NVhxPjiXZPZ8Jf3h8B1VUNXnK3oPlWFZGRwRrdmjO5+DUPXvX+eMc725CLtCtMFGMiXS3j6S/83ksUzSJbPYdIso0kZJmqWkeBJwY0aIDfZ0xv+o4peP/aLhQ4/zhFyHreco9WEXV+rKU0BTbEHukhlgCzajOXZI5h99NcRHHgQRTTj6vVaYUDCXxh6C3ZjIDje1pv8Ie6bg6xQaISTRdepD1CBf+UiyhefwNKT30Fx+mnESxeQFl3EKoMKa7LiG+vuO3VR39PgHHNhvIoH731rul/MVDHbZdgnwoCbIIqd0FxA1yjHIFcYxJvQ3XQUuz/zL4Btd6PApKunECA2E0V5xhnS43GDx1sCIGJCvGc8jGtcq7RCHyYnh6sLXHwFvSd/iIUnfgRz6Rwm0ENTX6ktyBsKIcMIVrgU3r1wyioSfJgApjTQAZVM2NPhynI2JPV8AgPGBQSI0Chi6Klt0FuPYdsH/xHs1G4UtikAIWtk4OVMOVGxKjpevxZvBYBUYdw1HrKEhS6aMWUfkSqg8y7M1QX0L5xHduUydOciln/05RogbyiAeN12l91y/eZDj5tWgpkkEdFm5klLkS6IU9i5g8j2P4xSx1UdEipKEExvgZ7dg2hyB8pkDqVNXMdD4Kr40qoi3Ys3jp3eCgDh/WXDsQNIlSgYy7VI7GigClLmc+iicNSccgUrz/xtDZA3FkB8QbJqquKNGraRuiq1YY4/jGFoTXKDmKndA+8G3vvfuyJk4nc9GYQ6BtIp9E0CFTSdSKkUzS2sV1UJhwHsq1firQEQ33/jU+Q+T+iYCszIcziSZaqC3DUeGlbqPFT1T/RKDZA3DkCqDP9YoF6VSehuBUx4srecAElQFhp5BrRmtgJHHwPe/z/KBCwkrqBBXV+CyeoYpeJwHi1UC14qL0qYqKq2u3EKb9kYRGpTfiYLKUPiXlXTuggS317Ag8N5sUKGZOYrkoFGdZr3DYIRAoN0EbpVFTvYZ6+kxub6xQvWJUS0gDwoSprGWJm9D3Mf/S3Eh+9BVvbluWGUCKACFQ0rCQzGpZNQ2niNOHCxb9i61UVgbWQtjw23StJMQkUUJ9NEALDQ6t69o+NILYo/8Cn7YUNnXQdZyy2+U6+pAEIpIZIZ2XvBim4lteP6PEBlRk7cRYwOUpSNNrL23cCeD2LHvQ8gmmoIZ4r7N89zpClbgv1cEdkVzhsvfYGTcgqr1jtu8lHfNABhwqLwfSC+XYACGOyFd6vhJZiqdmf/XUl+MCVcW5A7teHXcl0vBCdNRVroJHR/QqNcp5voasVYLEOUM9uw+cS7oA6dgG2yrXcHgulNMGw55RxE1oTLUtTlfeAx4m5Io5ALXSnc4Omst/SG3ywA4UZnx6WjtjgpnyqV7tqLXWznypeuD2dY9Q/qOsgtbYo7/WTnH5PG4Ypa4gSIaEEAa0LkNkUWTiOf24Pg4D2YOnwvsGUXymgWeTkh1JHSclZ76IZRlRZpSqIiG6WqhFgl6ehm76q3OEDIX+PURz6kWY2elu+ToStKYqVYlLGZwtX0LtaVagtyp3f9LVyfvjGVFR1RvJSKuBvYk6BnG+ioKSTbj2Ly3vcjOHQ/bDKLLlKYqCUBeRhSzkcod14BAUhi6mA5enmV5hS0aDcQiD0db2UL4gDijgIHEApWjBdk/fjtoVDFSJFZgvnaxbqFHXyHn+osiOtRl9y8ULEidIJJZHO70Tz+HoQ77ka0+QhsulXkdfoF3bGAIvLSJsuhO9TfCrUjCNLN0iE3AbNgFdOR0GC/thEX660cg0juj7w1z76uKKHVrRyJE3m5Iy+S4Q6TuAbIndjz1Rk0fu1RJddnfyqm35DxJ96yF6TjzWGjVIJuOIFLcRv2wD3Y8+hnUTa2IQ/bsJiUnhHRZSg9u55FDaZ3c7JSNUJS69lDHzqKvGOyuC3CuIQklrdDkM62Wqdi6doDnKKjS35IikIsteSwvLKLT2fVAFl/eLguOpKmvc6VBIf8l2P7kgbilDUcic5yxgcVSShDovrSKgo9BYSb0TMzOB/OYvenfg04dBJIZlDqFqxKnC6tr7VLIO8bnpwj5Wnf3qvyt/66D+tinLVYj/VftTt4Rdn4Ixq9O55GjGJ3cF2vk+Xfj/Sp13WQdb07DiChOC/DApwEe76GWxENvW6sk9vxcqQUaBZRuWl0smkst/bA7L4XOz70GZj2DmTxhHQrui4+px+b+z4I1jNWIaev6+d7u12sBsgduOPSY8HM0zVdca5bjgxasSRV/zfZtcN+DzYkBVhBE+X8AXc1aQUAACAASURBVEze+0EEB+6H3XQAZZlKL7voTgmhyhW8KLND16AGyB24kWL9awtyB1bW96YPG4vYaurmbshoAnblUYJGqOvMNLK1NkRhmhiEbRTzuzHxrncjOP4wsnAGWrcBk0q6tyL2SlVY9KFYBCNtvVJpvwMf5218yRog637zq2DbS+mIy1uF6BRCcDM6nISoE6Iu+WVDdNU89M53YOKeB6CPHsegOYuVIkEjmqEuI2SglLcelUKp64gXaYZ1/yT1BWsLcof2QEVVHwnOuewReziIiwAqYobJIstzJ/JGbdudD6D1wGcR7joI05rGsgmhw0nETMVmAIdIVR2yVY/TsM33rdD9d4fuxu1ctrYgt7N6N3mtI7y5jBbLcW4EW4jMUO4/EHWTjJmoMMTU3DyaO/dC7X8Qwe53ose563ELhU4QIhJVGtGeIsYot+MNkuSxhozfIc3qDn2it+dla4DcifvOKVJhhMWVHvo2RHN2C1ZMgKUiwOzJBzBz8BhsNAkbT0BFTYRhAzppwiQtZAkH8kQIVQLNkW18f75W4mRjq/QsEAyVyIfjOO7Ep3lbX7MGyDrf/kKFuFxEKBuzKMIEzdl5zB29H7Y9D9uag56ch4qngIhfTNtyAi6QG+rNOt3ayAaITICQxUJf/HYKhb7KTpskg3bG1Kw3esjtOq/bG/VyNUDW+c50gxbCR38N8V3vc4VxWpOZTa4yTkEyyojST9KkoVeT+9zUgkIXKIIModUIOf2JU0Mo0DbWQ80SpAyg4XCRCj1V4P4WECFZ59tx25erAXLbS3jtBZbCacS/9D8jufvjojlVlAYxA3KOT+J0JWavRJazkmgjONjmyZRvIcqEBEA1hoZym06+wVFD2D/uRiP4iN13ydUx+jrfSH+5GiDrvK5LYRvxJz6P6O5PSP8GRxCElO6RTkEKJri2T+FGKW5710rLgS6kDSasiYiYnFexHc7v8yq3Mn7ByXhSMpTXYYKs0jFc54/ztr9cDZB13gICkE99HvHRXwQoPi1zxJxQgptdyTqIa9KRzS3wINuE1XCLaFgJdAAZNbb66U9uHqxXRGRmbFQaqT2sdb6ZdSV9/Rd0KZxB/Ol/ifDIY0AYi8q4wMAPtGEl3X1vfPO7RJWTiKNNcflcNxGkanRyUkDSPi2w4uvdtavySA2Q9b+ftQVZ5zVdDNtIPvM7CI/+gii7+3lS1agX3/pZbWs3BrnKTREm1XTvShl3OK/QwQwUy3ZlSOEHD/m4bgjojR83a4/dcBGFdV7vO325GiDrvMLiYn3m95Ac/UUY9mv4uePVIDexEsOOtusBUnVGuzc1HLM2JiAi03HH1M2d5eGU3NWJ6zVA1n6Ta4Csfe1u+ErOEI9+6V8ioVZVkMgkKc7xYAuTk/F3zhWn3brSuEOL/G+skWc1gEjpYxWA1BZknW9mHYOs/4KuBNOIPv3bSO56DNAESABDCR8fYUh04SSanCUZ29Uc6OkCdz/tyT9nXNitGgdX6VzzT5EPreKVG3yk2oKs/T7XFmTta3fDV0qQ/pl/hfToLwhAKpKiiMpUu3pcc82TcFn3c/ytStJsJKVQAaQag1wRFcdpWKP+xVe/rRoga7/JNUDWvnarAKSN+LO/g/joxwHGIGIF/Bjm1QBSTR/2FfOqIbQisI8DhL+0AsiQ0es1nVb7KDVA1n6Ta4Csfe1u+MplSfOyDuItiMQZbs7gNRakcq+cUpkL5n0MwguPuqZHE3Sv19AdB8io56S2IOt5S2uArOdqAujpCQyO/QJaxz6CaNcBoDEBW4bIOOAmoMq66wqsBp9xqqzo8cogHNfPTqA461G1JPoW3Wp0dBW/jL33VWbguKuskYfyZlFPXOdbeM3laoCs8+rmKsGinke8425M3nUv1J7DsLM7UUbTyHUL/Dk7CQkQsrKYyg0MlQ9zP8vSdRrKyGVvZWSi1HWbfDVrcqOPUwNk7Te5Bsja1+6Gr5Qp4DZGHwnKqc1o7D+G6ND9wNaDsK0tMPEMDCnuMvY5ZBbYl/wsdDXRlq24EmwYFMbp63KiVBXAi1UYD/Rf4zPUAFn7Ta4Bsva1u/EreexHAWxeoF8CvWQG2fRWBFsOYGr3MST7TgDtnUDIeYGpDLnhHEKSfVXuqexk/JLDNRaIOIWUV6Pi9QClBsjab3INkLWv3SqvJOnKz6MIYtgwwZV+iY6JEU1twfTWA0g37QZmd0Nt2gPMbYVqTomkD0wMZBSqpnaugopjAZufHCYEx+shcn2mq3ax1veG1gBZ3/V0VfGykAm0oFpizGJhjLw06OcKJmjBhhPIggnYiU1obNmDiZ17EWzbA0zvA+Jtkh52AtMKCLWTy5TKohOBqB7jlfNh4fEGn6e2IGu/yTVA1r52q75SNjGn0Mq8cs7rCFyjlNBLuPlD9DOLfqlhkxaSqRmE0/PIN52E3vEA0m17oGfaQByJLJAJAhiRJnUAccSUygNzdMgaIHfgRtZUk/VfVKfQTgy4OKLIMlGXjqi/K4G3oMdZCU6QUgEKq9C3Gt2gDT2zD41tB1Bs3o2pA8ehNu9EhgQqmfClDkd2d+4WrxlKh+HNVLE22oJIEmGNqeX1vyO3d8Xagtze+r3q1Q4gVFN3Iwf4iGQmBWsdXrS6ir7FHDhVBhkJZgvpJsyCaVyK5pEc/wBmH/k48uldQDwlfCvNRndFPUUCJIC2BIhLC6/2uBOb9e1SI6kBss4AcUbCa2FJ8ziHtrh5H66w4SX2K2tStQRKwZCzuksU8RwuxFvR3f0uHPjwrwDb7kKhUkntkhdMgNCCsNwYiLiDc79qgKz/zawBsu5rSkswEq8mv0TUD6sv4ZtUNEOCZlx6n83lKa5iCheS7dj1wc+hcd+jMHoGNm75ll0/Q8ST52V2IcuOVe1kHYP0my1NbUHWfeO8TS4oBQsCZGxghxgSb0GGLYIeKNXwFnpaNkEeTOFSMof+1qPY87F/BrXpELKeRtiaBhVOKPRAPSHpKWHsUblpmlbrxlakdrHWvvdqC7L2tbvxK2XDimQJEIxt2GEX4XBXe9CwQkjwaBg9hV4yj/jouxCdfA8wfxRobIMtqeOrYOMAhQCEQqYWYSUBxDimBsh630m5Xg2QO7GsQhlxdQxOj6r46VXVW/Cj3Uw8tuKyDRcmxCDchGD3/Yje94uw244Aug0VzcEMXIxRxtT1da8jUSVibFMlfElyrC3Iut/NGiDrvqQeHCKw4GbiSbOUdTO4K8tCGdFSGQSsmFPy3QRYjrYjvP8TaL37oyjDKRRBGyqYhu0ViNMURUj1RVcF4QTcyDjpBqmISO9J7WKt9+2sAbLeKzoaSC7qoEMldqNk5rmQrqIIZZkjR4k0STjpHtbGWIj3Qj30WbQf+hBMo42BbSHrA9NJytmcKAOgCKzEIaE1kh3jzG8pFQYbC5C1BvB3Ih5a91s4dsEaIHdsdZWc9sSEC6gtFOVICgcQzhdkdTwII6CXozQJLk8dQfzQL2Pq3odhJjfBsLekbzAZBCgLCxUrDzrnlklvu6SORbJxVeGfjd6Ub6UOxhogdwQglB7RKLURIBAgpLILQErGJgEGZQkbs4kqAgYGYTiN/r6H0fjArwJb96JMWlC6gSxXmODe52vdZX0my2n0iricDLXd2DpIbUHuyMZ5O1zUZ7CYZxKAuEZ0kfmRvzIFrLFUlNAzcyjjFrIeayVN2HsexebH/hnKaAIco6B0gtwAKZNUTHaJseC8b6qfOEUsUXqXx+oNIrUFWfu+qy3I2tfu5mle2b/czO7E14Y96QRHCKNjDCZmkJ58BzC3HfbCEi6fWUJv5wnsfPSzMEFT5qBbHYjh4N4PjZMLcuqKJcrA5b8CXpeWZET0etX7qgGy9pv8lgOIO0df7W5cSxRf+4K95iul3lGleZ0AFrWulHW8qdIm6NgY3Zl5zH/oF6GPnAQ6Fp3TV7FsJzBx9H4kyQQiTr1lFozkEgOEJRALQEogKJAL8EJ/XcesX82K1AB5zbu26hN+jgDxqoIVb/t1tZCSAOjknRn+BjJ33FWojQ1Q8GTWMVQyBZtOosgsil4HqR0gNgOEJuPEDqlEO5EELXPJOVSTR73UJeQ49vo8nkg44lBx41eDayoKrSMh8jSX/ln/ciX9IAWsLaHYNcjfQ3dIReggxWJ7D7Z+/Feh956EvdrB5R/8EMuDPnaeOAHdaCNozcOEEygjzip0GbCwYMdh5siKDNwRyXRc1iMjlko8GbJaSua3ZHnHzotxtZThbLe1758bvrIO0m9nQcVnrr7G5olXQBk/CCsRWzmR3TwME4YYmBwWOZKQ2aEMJi9Q6iaWwykMJndg9q4Hkey9G91LHZx79ilMmUWkS2egrryCGB1EOgPyFSng5SZGmLQkNijLDDo0UGEOwxqDSeSEltG0DCA0HZ5I3CQBE3cl+jB5jsIGCJImM7YwOccYKKg0R9HtAOEMQhXBZgOEto9cR1jaeh9m/9Fvwc4dguouo/Otv8SV734FDdVHtHkfWvd8BNHBh5Cl8yijRLoM+VtjZLD5ACpuoESIbqaRxAqx45z4aETB2KoGMzKosuoS2Mt4UbkLTCGs9thoy3M72+pOvXbjLUh1KlefiFykGyZgPIlv+HOOLaP/HqDkqYwcITdsnklpIY9ncbWxFZMnP4DW8fcAkzuAMgb6HWBwHubUE1h56tsoLr2AJF9AUnYQsmdjQJclFrAYFFAB7VOGPBsg5pBNE/pKOEcPkEMbQUbdyNRZFidWZPMy42R1hB7dqOY8osk2Li+dg44TWNVGe2Yzls6+iMn8MrQtsNI+jE2//Jsw7QPQZRf9x/8MK1//A7T1MrrxDMpt96L9/n8Mtfse5GghtyGiiG5aCUvwBqHMW+9zAm4ARHKYjLQWDakrbjSJU0jxOBEc+YPHBf1vnOzXndrkt3PdjQeINFi7U0s8juFNrUxH5SBUN7s6GZ2SFMFQGudeBSGvQ93bBEtRG2rffZh612PQO+6GwQQsUqDMoAaXoPMryM/9DL1TT6D/8pNQF06jhQGabI8dulUEi9tAnAzF3gy6RpR9kyYlmQwVwlBLnRYCJVTZkUJfGE2iNBHyxhyiBz4G7DiCS2eeRxhECFq70Jyaw/JzT6B85Qksnn4al4oU7/q130K49zhQdjD43p9j8LUvYaI4h56NsdLcjvTIezDNa80fhlFNGGa1mB1j0M7zggkz7+lRQshP6qn+NsprebbLOBQqwNxM9KG2ID8XLpa7TeIfS/BKoHAzcmM6V8Y9Y5wGLk+S7jvLllWhVYQobITcROiyv3t+P2bf+WGE+++DaczDBg1Ylp7LAkGQQQV0qxZgeheRv/IUVn7498hefAJT+RKaOofS7CPPURYFFBuRolgsinRdSEO46+ETl8QDnP3inClY9umWTaFvJxDuuwfJw78E7LoLMEvovHwGza1HZdyz7awge+UpnP7Jt/HChQ7e88l/gsau/UD3Agb/8EfIvvNHmDQXxEr29BQWgjZmj78Xzfs/AszugdXTKIMmyoDicu5cpHWgVWAj79AoS57Aj1kQ8Ps197QXd+S4Vl1xt1aJ/2qA/JwAUpl+d0Pd5nN+MX183jBvNXyPgzvt3ESlQRFgxSYY6CZs2kZzdgfi+b1I9xxHeOAemMYmFMr55zQ3aaLRJ5VDc7P3kQYZgmIB5cs/hTn/LF7+qz/EjFnGZJAjpPuSF7CkhYQhyoABPSvWfuZAZfaE0l64nvE4RNYtYMMZrOhpNN75GJrv/izy5hyi5dN44Zv/Dfvue490BCKdBMoespUlLC9bzOw6JJpXWD6F4utfRP6j/4zEXpQqeVYGGEQzKFpbkO67F43DDwBz+4GJrbDNWclg5dT8pV6WsUhCXzCsIhHZ9H40jx+z4A6l0cAe6STxMcmN3JAaID8HgDh9p5EF4WlcDZcRl0UaiKqgnANm3GAyCq0VJkAvnkavOY+8sRXh3C5s238MetcRqMYMELRQBg2UQYSiLMXXj+MIS90BkmYTZcnNP0BkVpCoZSi9hIv/5fdhzzyN6PJptMwAceWHyCiCzAOEbg3pIZGcttK6YXOo0MKGGr1+gajRxhUzgcbDn8TUQ58G0ingpW/hxT/5ItphCjTn0Lr7XQj3HAImN8Gmm6X/o+wtI1h6HsWX/y8Upx9HbBegDZMECroxhQGBEk4h2XIQwfwBhHuOQ+25G0imAaQo0ybyMkBCn4sJgmriiH+fIuggJXxnJoxfT0ZxfEQ1QG4aomx4DFIBRHqw5UR2ABEYVNmioU5HJBXlUkXo6gZ6SRuzh+9Detc7gdm9gGoC8QTQbAuTTwbJkvwXetE1FOj1e4ijlqRgC4YbdElUDpMvIwlWgMEFZI//NRa+9w1EV89gSmcI7ADG9Jz6DucJmgh9PYVOPItSN0A9XartloOr0EzlZgUmJmZwuafRfOAxzLzvV4AwxeBrv4+rf/unaA1WoFttZO09mHznu6F3HYZiEoGz0ssByrNPoPdn/xZJ7wy06UDZEjoMYHsZVEg6SoqFlRz9aBrtEw8iPfEIVHsnVHMT0OIM9gbAz+gzVwIH3/4uSWnxoZjWdkIPXG3ygAUgtYv1xgaInMgicM7omy4N4+5YBJ9VmGKhZxHNbMHEw48Ce08AE1uAxpxYC25cOc+5iclpYgBLlULGBWDfdiZQi1mZljqEt14+36nswAXZK2eQf/9r6Pzw60iWTyG1C1BFx2lbNSaRDQJcbe3DxL2PId19N/R0G9BdnPrKH8N2LyPJO4jzAotLPUTH3oUtj/5TRK0Z4Fv/L7p/+8do9C8hMxYd1UQ/TBC35zF96CSCLXthFhaQPf1dmHNPILIdBIFzJl3W1nchio+pJUDvIJGDQs8fwMzBexAePA5M7UKQbEVh3cAeun2MpETr2strSc+J72R3x5EDSHzTPNZN986afvharbo3c+te67WrvaHbcRV/bhak6l1we9VCyYxkPnj6x1Iky3UTF1cMZvYdw8SHfgl2bh9s0gaCBjSnNxmqnruyoU5SCaCdC0FKeA5YB5BANyTwHjYsiYqIj4CyHBgsQK+cQvfbf47O9/4S0/l5xPmCK/xNzqDIE/R2P4zJD/0PMJsOC1UkyK9ArbwCFB1kl86ivLqI5556BhcGwPFP/zo2790F9e3/hOW/+RLS7llJ0dIkZYbxBbWuGtBRCyZXUNkyUrWCMGT2zIXOWmaKECB+IiHffBCiLC16iNBP2rCTW6CntwDt/Zg89G7EOw6JJWGcxtpJmAYYZEAaV7UP52pVVRCG6aHP0a1pt6/hRa+1yd/2AHF+sAdCVbjy1AwrLhZnf6fo6Ulkjc3IG/OYPngv0gc+hKK9C7lNqOWBQGlXEygHwnUK2DOhWF1mnpZboHBVZ/lVqZyYLtZhOoCibs6a0Eiwwh4WV5A/+TV0v/UnaFz4KeJsQRTX0ZpEMVDoHv0opj712+imOzHILHov/gjzbY2wTY1dDZsZXD17HgMdYWLXPjTDDPo7f4zFr/8BkpWzSLn5S1+ptwXysgR0KuBl8xMLjg7BThFFZopIsqLqXaeL5DJ7/JxFkKDQCYogxXK8BWrLScwefRDpzkMom3MwwQSQpM6SEJsCu2r8p/duBSA3G962BgS8xktqgLyuNa3iDwlC/N2iCiGLhpEEpb1kDo299yE6cD/CLYeATXtQNtrImVEyFjHnjZMtawcoeePpq/tpfW5ueAFtHECMThn+X5vc9AFtbwBMJBbBYBmD57+Fpe99GeGL30dzsACYLpJGCJPl6B19DBOf/R109RaU/Rzf/NL/gQOzGjuOn0C6Yz/QmBW6SxmSumKgLj+H8u/+I7If/zUa+YK8HzY9CUjJG2E7LrlU7KoiWEoCRANhUpX0PIXdgUQsJSv97EAM6FK6/g9anBVMYEFtRrz1MGaPP4Tk8DuA1lYYPQmbsE5U2Wauwihg5+sDhDeZj/u6buYtPakGyGstVxWlD42IT+lKD7eW+Rm9aAbxruNI73kU2H0SiLfA6hQ2TCW7w6eKrx5wKlMmAKFQG4uGitwk/lxURCgiDZQ6lqBUMjoek9XZzEI6Q9amzpBdeBb9Z7+P6NKL6L/yNPoXX8IUVpBigP6xjwhAimAeqreCn/77/xU4+xPMHziMLQ8+6pIGcQOmwSp7Djz7ffS//ocIXv4hYt31sqPc/H6KZ6hQZgUwKBDQlRM5Xj/jeSjh42pF7ClhPEJel5YCpXOZZCEMs20R+miAA0SDHccxfeL9iO56SEBig1S4XC5V7gBCkDpHiwBhFHIzXcbXuqG39vMaIK+1XkP+Q3WsjSgSubXoqgR6dh9a930Q+tj7gcYO9KPNkm+JvdgmA3HnqvMkzqFUAUv3RTJinBhOnSgX/bN3Ivc1lLDqC/d2qxqaWWRdNCILW3Rhs2Woso/Osz9G8dx3oF7+MaLuOXQPPILpX/o8ynQrku4lnPvSv0Hj9OMCCtXeheZ+WrsDQCsGBjnw/JMwP/gq1NWXoAJytZgvSoUFQIJlENPlyqBJQAwUypANVQE0Fd4l8eDcKaucRJz7vC47JxCxHCnts3UcvlPmyGyKhWgr9L4HMPfeTyPYfhxgYVEzRc2r8ZgYtyK8Rg2Qm21ZZX9v/yq9/lXF27F1KmpC5b2OKt1+s47v96oqLgTDkb8rRqPKzMgp6U79UmlJ55LHZCc3YfLwfQhPvh+YP4Ju1sAg3YxQBWhZI+lPUfgw7F4lOKh7W0DRTfGERslqUQaHLa/KoFDOzw65qXyBXorj5PWWA5kwYAZdGMN6RiJsYc0sVucCin/4S1x+6Se42t6Hbb/wG4ibbTQ6L+Pi//OvMXflJ8LU7a6Uwr8q40iyZypOoQd9TKycQ2S7QKJhwwaKIpR9z9og2JGe9xDwvcYBShIwyatC5WKNFBhlfiEdLYmb2L9OK8riJf+kukkPAXpANIGrmMPS1pPY+t7PIT78EEBel8Rm7iCiZaWFdcAjQPhmaguyGkiU/b29DiAVfWIose8WjScPU44VLUS+SbVAoY076oVLGXqVcd5FNifkA4D91lojy0j1cKPHtM6gyi4sm4fCCfTLBsq4ja6eQjExj2h+D6aO3IvGnqMokELPzKNbcDNYNCOfqh3yt91uF7/ecVbGmMLOPRH/3bssNybnuY0zzglzn9UA/a5sZMY3BG8XEabKFWQ/+Etkf/dFzCw9K66OAYPh1JEZpbjINTOImSQQWj3fWkVRcWkCblBXFPU0Fp+4oBUcPa7lgIyaB6tqpnumvHdVyJiFxbKFpX0PoP3IZ9Ha/wisbom6CpPeZBrHmUFUUmMrknrRtVd6LfP/5vz57dDvHUCG9HNnxh1i3NI5gMgt9RCoaCBVRmRYenb9DnxEMWyeuyOPzQqmhIpCGEr5l7kLMOMJdMoEl7MQ7b0n0b7//cCW/SiyELq9Dbo1i153gLTVplytgFHi0lVaS28n173abef4AtoefozlPkFeYCq/hPy7f47B4/8fWiunxYKR4WtNJJ1+UJmAY2M3HtmLGqZU6KAF+86Po/XI56BmjiA3KeLAip4WARJlFmHOsQukAN+My/vmBMON3vVtAmT/tcfUdc3/4i0NWYWjqhLdIqYhqwKU05jl0ctaRCBdcFpzexVA3kfAEy7QKPQkOnoKg6gFOzkLbN6Fyf3H0NhzDGZ6C/Iigg4noYIG+t0cE80ZGF6MQA0dUG/0WH+AWAz6PaSkzPKELnucYQucewaX/tufID71bUwWl+TzkSMGy2IDLQgV2ldTqLpDm45+G+OYXKEftJF89J8jvP9TyNVWWCTSTMV+XVoRzTFvBTusQlhakI1F8h1agJtf9g4BhFmgId3W026rN+LGFbuCltOKddqzzgKxWCf+rSbb1bs5ZYastFgO59Gb3ofWtt1o7juIlGzWyTlpeCoC9j0kUDqFDhKYwiKNm8gGLPhZJAkDyo15SKanyGG7S9DdS4DqAvlVFM/+EAs/+AaaSy+hZZZhVe7SpAyuZda5Z9FuzNuU32IZYRAkpMQEmxF/6jcR3v0xdIs5hEmImBZYMn4M3EjRZ+jnXKwNNnUbuCpjjmoljXSD3/5aB6uyXzhwnaM73ofhT89hmD4CCEkKBIFLIJbOnaqKWvxTIlGNQWnRZ5CoAph0GmrHScT73onWjr3Qm7cAzSlHBGQTUtBEYUTxSQJRXjKKYmQlW2UV0oAZqlc/Xit1uJa7QoCYfg8rp36G3rOPIxicR1osoDj3ArB4Do1yBTEtCgEiXqc7MNyZsrHHsrUFSpsjUE30gnlEn/yfEB37KJbsJiQNjWTgQx2qPpCQJk0kBIiM2H3LP27LgpgvHBSADEUNKjbt0JVxwsrXNA1InJJIm6oEiHyNAISZJLpUOZA2pP6wUGj0Gm2JKyZ334XWkQcRbDkkuXsG91FKgITiP4vVkIYo2iQKqykEKWsYbFFiQnL1oHK9QUI3yeSZNFdd/Ps/gn35B5gpFxBkS0iTALoceCoLAUKKvld1v8kYgju3EwsYm0OrlhQyw0/8JuK7H8NyNCcHTYt9YNJbxrpJ4QqT0lczLLHfubf2BrjybQLkkAdIRTOvLIErTrmH9JdelyFyFsKlbWk8qgEx9G8dDeJyEQGbd6J98hGoXYcRTG+Das4B5BEZDVtYBHFD0puGvjGnwgrd1jVR0QUotUJuS4RKS4VjtbN5vQHCT11yRnnnHJa//iV0fvwVzGbnEOYrkmqmGynaujKKoISSosrN53Tcub3CDU8rnqATbkX0yd9EfOJj6IazuNpV2BS6YbkuHekAQpIJW5h9AvLOvbU3wJVvCyDFF46we9mnOUfCy44k54ZRSvpIdGV9LosDKlmBjqimzN1NHzcSMm6mGljWLTR3Hkbz5Hug9h2FapF92wDipvCPKnfEVa9cK22Fw1HdhJldR2IU31nRwriRyBvxIOZzsl37lzH42V/j3J/+W2zqnkYroEYztQAAIABJREFUyOR9mSAR8Aa2lC8Xg/HQ4NzBUfFzQ96rKVCUVDtpYEW10fz4byB5xydxeiXBVHuT9Hyw9kGAENDkfkkxVQqqGxuH3M5B9lrxwutda7l/zKgagyga78V89RUUAaJE2MwXpsQiVCoevpgnrFlXh+Wpw4mtImvDot0gQ84KdjKNbjiFbroJM/e9X2jhmN0Jy14NHYMiAhRCY2HM5for59fXWxjnjjXuiQGhTCcftE5+JPJGAYQr0LVAq1iGeeVbWPzr30dy6rtooguuV06VEpImrdtwjppeAWRELHy9N+32nucOELqqebIZ+sFPIHzwU+hFW2Hj2ZHqO427LaRzUr/NAVJS+pVF1rUDxHGjRPNJAmcNGzCQjh0fqLcMJJG4Un09AdPeg3DnMTQO3ge18xgsK7gUMaDoQRg6mX9rpSwycpRcpV20rljMoliC3ynSZ22VUxOsyvir6zPf3v66wav5axdJ5g0zxIvPIvvBX2DlH/4ErcFFJLoQSVCewBEDpiFLluleFhe8y7Pu72qVC4rnxDhEYZBMYbD9JKY++DkEe+5Dp2hIt2XBbkgh4pSICZBKXYaV/A2yynz3bxQLskaAMMiudmS1MV0fA3sgKLTMDW+MZP6F7rAUNNHaewITnIi09RCKxmaYaBKFSlAyiFcBIq0RElQij+NEZseVDqVPWikUlglLlyp2N9OdcyLGNqpdbsi2EwvCtvPQIsouIn/xcSx8+d8hWXgWE2AzFZuaSF3x1lZyp2424UglZUPeqkvHy5Qpi64O0Em3oP3gxxGeeB/Q2iaSSH12LyIEOc8yV0RA4ZvNNuhtvnkBUk05qjJS1ZHNk5uBM3sPVIi+CZAZdrZFKKNJTG7dh2DHQTT3HQW2H0QRTGJA8lvUQBCmIp4mDlRuJKRhXYQmgZQMJ84wfmccS9fLNnjfmABzzxmLVDbkdkoM4oFpyz6Ci09h8at/APPiN9EanANza+LX8w0LMVL+4gAiSY0bFzTvyJun+1ooGNNHGWv0gynozUcQ3fUIkgcfg0nm0Q+nRHaOI6lpQYTIyWOIFmQDTcibzoKUXzgsRBLHRariD4nofCtrLOZ5YALk7KRrTEFNboE98DBae05Ct+eA5iRsGCNnWwNjjDCCVt4V42VzBwaKndHHMhVAPEtVlGn8fnJ/sNDoCo4V+Zdunas0bNxD4i7F6QQG6coZlE98Bd3v/SnCy0+iaQduNgd5YgSHWEZ+oArKG/hOSfI0AUy5DJVy3VroFBMo549i9rFfhd1zD/JwVkZJU9+XMQgPKqERbfDR86YDiPnCYWkdGgHEZ6+YzxfL0UAPidDQg4k5TO3Yh3jPceDA+2A54J4uBukV3PglMzxsCOJWZn841f8CYbAOEzvsTZDhlo7T5ZmSwvdyj+pP1/XHDSokFtGfdT0dt/4YP829rIr8qhud8v43+EQUEwcdcrJ6C2hc/CG63/gi9EvfQlp0nMiEuFT8w62bKxKOJyFu/d3e8itkpAJjnz6M6kOVIYyawlK4BfrIuzD9iX8KE22CVS0/U4QAYXaQFoRSqr55Xe5J5Xa5lHVF9KzCwLWt/+gTrQ9A3L6p3pPbNTe6lz6ilUNr/D048UH214wH6TfcDdnvHrbszHNC+4xBKoBEGKgUC2UDtr0L00fehfjAfQjmdkGls0A6JxRuxizSpeabetwucZvQevMtiyp48PWUYTxRsVn9RxVKQHWzHIjGoxXnN9/qw3XjuTZcv3FlJSqVaf7d88j8zxlbufdsZP/3CfdyEXH/OSz/1y8i+v5XkFLsQT5UJJ+TQzmFpChtg1Xd6Fbf6xqfLzEIf6eMsHLpQJUgp0hEOoV8824MgglMbdmD1q49wMSEcLGQTgDBlK/Mdt37znmdJjC3AwibyAK2MrtMo4yd9tOtN5zD5c5TT+dhixx3He8TE9bUaKYguYeK7C/eb+oSKNicTWyjZIS48taIhK0ApDoT/Z++E8dRdst/vd+SBCif3FfESffo6wTLqoVo60FMH30Y0UHOstiLMmxLPzQLd26A5K09JIO1po1+a79n9GxW+VnRqCj9nnZemTRxjRxAZBaUCFO7gZuKr2MmmzdCLSEuT2Pxr34f8Tf/Ag274kEWOTlSxYwbBa8dvf3nQuGogO9OKadYz9gxN+iQqdCcRDw9izyIRJKY9zFt70A+6KNcuQxV8kBoItp0AHN3P4LwyP0o4rY8nw8W4oex4EZTVCqdc7KnFQGiUYjTzdSDRciygz9gxeoJQMixYYaPGTzWpxwVSOogtgTZ2iz6sr4i1tQ3L4jzwJ/xe/bzOyz7HehO5aWW2RW9hIIJm9A+cAJTB08Ce48BKfPpnHjECnKEOErWpIexXsWe1w+XSk6oCqAdrIceHYdiyv8q0VP3c26EmC4jgIGKoPUKYnMGV2lB/v7P0CyXoMDiXOzEIliEI7u5UmfZwENA2nL97ZV4zplvfyjwX5xLAmRgSzN5cQQ1fQaFKAqh2ZFI7S4Wz9BAPrULycEHMP2RX4FqbEURtmRFmHJ34yF89mIDzYi7P0xPO0Uvp15DaHjLJu6ui6aH7qCcewXKsJTGOd+J45vO2HhmJXFEO8RYbBwg/Jmr2f2rPZYB3oBxRjKDYMsBtPbfg3DPXbAz2wHKyiQtOVndQ4siRxSlUMLovbXHzwUg4mLRcox80aGAnS9Oui5tr/hYAYScMih0A6aqu4jNOSz8zRcRfPPPMEnZH5nVQfeKh4ar74iU560b1ltbxOue7US1HSAEpNUAH+9ySJxISo9VKJhJiWLRHqY7zXbjmFaU3ZlUzjchljCNpfYh7Prnn4ee2IUiYAYsQFRJwkr9eNQteltv/nW+mOBgtyZpPdzKJLgS+JWTLhJQMjvGO8xsDvMhSBllAq5hs0T1OehKi9uooaXr1DkFBIeAhwXx3u/eYynrmTVmEWw/jMahdyA8cC9MewcyDuYmOHjalCU7QxHR96DAc5DASjB+a4+NBwg/dAWQUQA+3Dveffed30OnUVooJM+r0aOmguoiLs/iyt/8ewSP/xdM5QtQbKdlDUe7QicByFFrsn82ECSrA8SRSE02gG7QCgBlzntHUT4SRGlTSigyGUkZEs8sRB7NYnnuGNq/+nmoyX3oB5OyeeKqz8Xz5W7tzt/eswmOkiMvvIATx2bLxBQJd0kbKeU+UFyPUOA2TSRjxzOMnTBOP22ozeqaNVxvP3ubxI32XlrlztEre+53P2qT6TlM7z6E1hFWwQ8DE/PomwRF2IDlYkqwUiIoc8SWKOZqvTkA4pJRLsaQkK4K9vwGdkBho1PVA+6OHT67LELJuOUsrpVLiPqncOVr/wHRD76CiYIWpC+GabhBbeRmEXpe4O1tidf/6pGL5UX4hhbEp+1JkqMkq8QlPokgotelWJQobUrXJ9jtaS2ycAZLs8cw92tfgJ06iG6Qyj1P3UQ5lw/Y4BjEKe1TfsPxyJwFceIWtOTW9sWKl3BlCb7ThGMyWJwWhgZBRMvgvATOVhHtAloRWg9/UMp+8LxbdmyoS9/4AxtPTKLR3oywvRk2YU2jgYz9mKxtsGJcWqRMzZYGmtaDwXwSw4q25a09NtqCSBnGA4RQl+KeQ417iNxQFahXf7ooJDOJ88qY7ehfgF55Dle/8R8RPfkNNMtFAYjIdFVVaRNBe4nTDZuJOFz+Kn3tj7/KjXAfcqR3NDZWgl2hpY2EUV3mJQIzEEpQHk5iYfIgNv36v3EACRlvjgHEc1hv7c7f7rMJEMrg8cE4kYONCPkBYDpAueT1B5gwoXVhzMRmNjnNndDFkHDuRmmIsIeAww1bccr33BJeDCNgDNJdcgQpfylhFvGJQQDNORwSeJJ5PnTW3aaqMl+3+7nv8OvpXOWu3C3SU6NxzN7dkgwGe+XZc66lRYKfj0FtqRL08z5C00Mzu4D+E19F57t/jualnyG1PSidS53QZb04RzByE6nk0hUC7/AHrC5/vUs33kU3TBhUARLVXhwHTk5iFYphCW0mSvDs7Lzc2IXN/93/AjV3NzJ2exoZRyTCdWJhNzAJ4TBeSbB68W2utzTSdZBfPYUL3/8GBktXMDU9g/bOPQhaE2BaQhJQGW8qAVUlF6pajxb1SUpGFTz4yRlsTfrvKajGLJTlJ/e+lxuNyfSXY6OG4l5VbolPj1bZkY1lKKx5lzkL4nQV6Y9KEV/2rrN+eZYhSCJJW8mPDE8pKydpbzCgHUGs+1Bnn0Tnb/8Y+XPfwmR5BSFyEWngtFlei2OadenmF244F+tVIKl276t3sUgIeRkh2ei+OMgkTEAlSroruoFL8VbM/ePfht79AEzYFnpRqCz6A4MwDhBvtCIKU7Ml4wzqGnDSWImGyqGLK8he+D5O//mXkF85g1aaYKLNGTEWRb6CkL1JOY9GumS09r4lXFgaGlGj5SS9dYCJmWlM79yNYH4rELeAya1U2ndHjfPNGNM5U8Z/haSzu/NixDMSB/TncIKsGSIuPUj7qt2x6VOgrt2Um2XAkpKk/Kxr02Z3XtFHENCd7AG9Syi++1X0vvMVRIsvIFFdp06o3eHE8IVSOqxgDwFSCXDdxvu+lZdKz4y/T6678dpq/rVdwFWcxVO5755LYPNgFBpKjEWK9R39MKY/8E9gJvegQCyu2ErfdVPzTLn1FM2tfKJrn0tPhla9UAp9a1CYErNhAT04g+w7f4ELX/0jTPQX0JDOyQCDkvHKACmzdYXYPp8C9vUuUazUCKJYSLJ5wfqKQpQ2EBBUsOhJOMGfuqK1G65sSZt2vrgMufQuux/eN8yvr62qvfYFWvsrqxECXoRCFOM8zZ7yXfzcnNTGwlHeQ6JyRPTDTA/IrsK8/AzKSy9j+Ud/j+TCM2jZZdHsdVQaJQBhBT3i3aPWlxSkXOC/cQ/yqphocMBwCpN+01/zJpyL5fS4+PAAqUiWlVi2jtAJZ3CxtQd7P/MvYLfdDVM2gOYMMtZUSiBhl+IGulnu8HaF/l5pUZQ5NsU5sPAMrvzVv4N+9puYscvc0KPhKJSA5Zr0fGXLH+7V/ecKFIVxJNrh3F8nzMoDlftgaEHcrG/yU/yXNAlWZ0RlQUYr8qYCiEgSjs0453r5Bq1eXsoktZB2xKwAxSLs4gUUF05BnfoZLlBCdLCEaPkCZrIVJGEu0j402SwQGl3IJKug4mWJ2FSVCdgoiBAcY3SZynpUzGJ/zDl3auhjOiqPovvpi6g+sKfQHOnx3cYWTL/jwwiPvQ+Y3gMbzSJXDWSFQoO15VvP0ax5Qdj9R/4UY+OMZ1FZYirsw57/CV78o/8T7StPYKpYkLiElkEHPChymKKAZdB+DWt5FHOHzO5VB4Yk/dw6KnpPbE0uZZyr87EIDppYzrxzQm08DatVGF1UnK4NPD3WvKrVC6VQWLlW7o1XnhYJa4EauAGfCy+hvPg8ihd/iqvP/BiTWQf9xSsI0gAtXSLuUuanRCnTdSkhwS5JTqSicANBw151N6ZtY5dHUivexfJkEA+S4RwWAmh8nIKoMZKMTNdK+0GlleVzcq09giTdjPa9jyK590PAxE5YNSXtDFI72cBNwCQKB6xyiCszVCSKxkEf5vyP8MIf/m/Y3H0GzfyqEFAUk0uKNSlmuOgykk923f6t7hETFYw7pT/fK+17dVBp+R4M6ZXO9ApDlQLLwlORGWTXxiHVv2/r9KjIALe69W/9dQJ1L2o3kh6t2os5tHMZulxGef5nWPnp3yM79RNES2cRdBYwQeE7UzgaCU1mtyPp7YwZPgpNSzCWQ1tyfmhZSOOIpUglE6I27FG1KfAXVtmTinNW3b7Kcoz+JGcp4yAiGyI0IyKGiP1R01gHWC5iFJsOYPKuh5EefgB6djdA6glHvglH60ZHwfXfu34xfJp1qM/sffzhet3gmoyNywKmoGUIoHJmHbsw53+AV/7wf8fm/DQSw7mT3PAKRVYgYv0ndsxyScWPVW+rv6oogqE0bmU1CCgCMSCPzUJlHiDu9ZW/7sFyfTONvG+f5luzj8VA0Ps4lQ6t3/eu4DWiEVUn8ZBfJGxVF0OMlzL4lmiCK1YuK6NS4fbpf1G5YU2IptkUiHUuswCRLwILL8OceQadn30XvZefQtJfQFMX0rstmqf+NSSuOeebrVLsjnSaYC5zTuvBIM9N4r3uXmwATPxqDKn2FSjGT7Eq7pAV/v/bu/Yfu6rzuvY555577zxt3kSQ8HADTQItDSiNCClU0CC1JVKlqlVTISWR+i/0hz7VX6r+WilSi1RVaqRKVRv1EZQ2TStwAYHBgLGNPfgx49fYY8977uu8d7W+b+97x8aQ+NqMsX2PNBjN3Dtzzz77299rfWt5aCzygB6PYkR+k3r9KeU2I7CjZRuoxm9BfPs9MFMk+Wti/N6HEW6jHF5dYy1ZXGegfK79PpOToRAPa4FOjo3VDsbufxDR9G0S/giBhIxN6CbmQSOca+6U95pYkjVlXHuDIF8DwmWc/dELqB96FZPpMkIeUox6ZASZuC1GwvwsDEEvMGVvs0I8UihBiG+lOykOPlNTbQboOwyKLu/Hn9aa2FzqxU/uGUB85WTgoGjlZMXcXHFR/UI1CVVr5UfjAg5acfp6l0PxJ3SvhEMXFmVRIo44UMTcijCLDKFpw2ycBuYPoHXwTUTn5lAtnUSYt+TAkdkWelE5VT/quvDUu3Tvdqmr9/Gvv5S/PzjRB1J4F97PYBeo0rCWRbnNctSRTt6JauJWhOMNOW0LWV8GnTFMRc+rfTPydVWWWKhUPHmYx8LY/5lnnkP9ni+KlLd0qLJMnR/XXjjTHDhSDkxtQEgindOY2ddbBopZnPjeH+KO9BxiEo0L7McdUNIO9+f5sO5cJMkHHSUP0vpZHtzQBiIlV1c6kkqLexACuOOXbnTd8tygCt3gl5zPAsbbJG4ptW2LLC/AhIu/Lmf/guzqQQRbJAiEV5csFhlM0QI2FlCdmEEytw+do/swbTuIOGhEnRFTIKdsgjWITW0Qm/8si3KDvIZeMqPWCXkHAiXG1iem+iyhh9xIbaSQQkZpUqlAJeU21G5/CLc9/Ryiu38eaN4CK2ObqcSlpk6kseYZUT91VI/HZ0L+YaFaCpaBuZ1YfPF72N4mX1mqA140EDEMRdfxuhxUw5YbCGkZtMgz6DRKgCB1aZoGeRT11vS/Uth2BsJmH/UtSJLmcZsMp5RCm2hUznDYrCsYaFYx0F4CbIccQkB7DeXxI9g4cgDJmWOIW4tSSxdFKMoWVDzpCuREFoQ1RDlpfW6QXX8pt0mXXasLT1rFvICxOqtGEioN/u0PcdHzhzly5jTxXRj/8nNoPPYkMH47bLRNhEkjhrP0FDXmC4SxOwORLUCgoWqiFCQbrBKExWmcfPEF1I/uxM35iuAElbhCe3eCjnDuXzogQz7HLTYQfnLn+lwnezC2INq0skE9g7vXHdGTyQ3r9OHcejb0exo0kawLk23AthZheysA+xdH92N9/jCiqqsSZjZHrczQqFKMsSHIBDtLGNxqLB3VYGXKjGW+rSeivpR9etVeK5tNsXlyULG7Kk1lTiQ6qto+rRAhBtQuIYQlxnJ8DyZ+9XmMf/GryGuTQKwsm0pLrs1XnfM430D4u0XKkSybQYqgNYeZv/8r3L7xAbZX6zoUJxS5OjlI3gORrnPzIteOgfgc0a2xzx9YPpUFErTmJjEcn3g6tK2mG+pVFKzmEKpFGyhbQLKI3v7Xsbr/TUQb5xD0VjFVK1EkbTlV4jhCYIgvy3Q8lh1vQr3Z6KPID7E7rILkOSI++L6jvmrb8dP3h6WP5jHhfBQ8WFwVJOeh4vtmrmxMYSGB5dSx2NiB6W98FxNf+AqqaBIFxkRINCiZKFfSf1Cl4kBDLOdBxEAKwqBSRGEX5uwMFn7wN9i+cQT1ZMVRr7p9wWptUEr4x6vmORGGWMmt9yAfMhDv+9wPuEj+W944+G/A0ptqcYhgjatycMLMVD1UrTNITu2HXZlFcehtZCcOYiooOANJwJUI90gYUCNUmi67QlAn46M2yij+Kck/k8uSBBQFQgKstrQjPsQTvCpvMXKeCK7JhTOsAIk/J2eaFFYcupj0QkanMXphHcvbvoRbaCA7HkEZTqBXhmgEdSEKlzETCi1JSG0E36ZQMeatRkCF1rQQ5OdQvLcTG6/8ENO9eQTJKgyNVMqgSshdhvRYWt2rlZrYD3P1DeT8YtZP/23DJemuEjvInlw3V4Ml7Vf4EXFH/MA4l2FVjW6z1FIcjYPhT5EBRQs2WUbn8FtY2/MysDSHyWIN4zbRebM00VkI1sRFHnfTVAxPK0INODATREKPShZJxtI6E8SJwa2EjAzzCLf+PZJCBswVnIH4FN31f4S8wjeYiZuSRD1AGk+gveMpbH/8d9G4fQfycBwJhQBqTfHi7GGQB1q1Ex2rpoQJDiYk+2MNaM9h7b//CfbgLkxlKwhM6iT4HDyC819hifJKGEjFKZIhrmHnOs5DYX/oL7vknNUKJuOc1JMaNVVhSZpJUgTOjJGhPNEE/PQhpAuH0Jt9F+XyccTJmvQxJJEX7TYlpNA6uGOs16KI99/aQe3zcPmaGX0VCwpDLc8QK3ptvcUnwJvF5qQkz4Xl4eW77ETVEiYSBujFk4h+5XlMPPpbsPF2EU0SRILYAPtIPASVqUTGB2Tp/SAbf8hDbglYeR8rP/w+mvMz8ryJdAAPS0lgFISacw6dVTFbIeKU55CP0Wy1gfRnhn3y5A9o55G5SHTfeZUjJpu7LVESgk1cjJRuc5j2Iuz8B+jM7Ue1MIOwdQa2uyLEA3VToUamCi4IRfn83AMJuqW87ImmXRKkA7IKm5BwQEGbEvr6WPra2rtb9Gl9pdGViqwbi/BNSB5OPHujALZWR2Yt1tBA/envYNtXfhtVNO2ahGxUKqOOVDLJ4exGZuV5DUIKNZDiNJJ9/4nuK/+O8ZWTiMqeaMioMJBjcqEcHZN0wckx5NOm4zDXlhqI7FkXZUk6NVA6ls9O5D1L4gyD8iqRllSNyXuZwhS5wNGDtbPIj7yD9oFdyE8fwETVRqNWwCZtdRaiQkWWQccKz8XmeKmw19HIlCPrPA/SV/jdPFnIxdbRzdF1wQrIZvONOBf79zeg+5+ccBV5ILD1JtIKaMfTaD7zHTR/6TcBMymkH4SNeIEmVp1oIHyQCtfRDSIOnzS2NJDOLM795O8QHdwp4ZVhrkhIO09Vl7OqJ2K+wolCjt0OP7x01QxEOJb8EApXQMirK2kUhqTiqbooeoR95ApsSjeAsyfQObAbG0f2Im6fxXbTQ0AZNILSxLCYZJNgguvquK3c75ZETyDhpco1i4dQvJLIMfSBfIPJNZGB3dKph2vEFC9mIP2mr/PSfAiNphxUmYmFW6t2532oP/U8qnu/BmPGEHDjCskdcw+XY8vQuyvgbzIQARsyvD63Fwsv/jWmzu7BWLUuTkWKxBLzOYiRRA1sEqiBXDgbcymrvKUGIl7CeRDlkNo0mUq3aCqkIm2WoBkRONkFsjaqk0fQObgLrcO7UU83EGVdNKoe6qTdEeMgrQ3RmPQc1DKh2E4sjUMdItByLkuN/JKTyhkIq1c0FM3FHbukwNm54CMDufhm8pAhCUQdpZIv7erPWAY2k9uQpzl6LJfUmmg+8CjqX/89lDc/TMVJaY/0RXxYRJST/3wD4UaXKhgBilWG8NBLWP/JC5hozyCq1mVk2HCSU0KPQDyQHH6CmNscrwwXCVxBA7kwyLs4imkQVnpwm+/3cU66QpZ3gKKLepChWj6F/NgMuoffR3LiHUympzBeswjYq+A6Sl7iKVPlKBGmDnZcg6ghFDbUa5fhIemsMnFjMsjkTR8sZ8jFQMTT6HxERQORXokC+UbXhSvAxcr8UedCJAcbknhIB5qiqWkkvRJJ1EAZjWPsS7+M5td/H8XkgwirBjndNNRlg9YpR4gj2ORB1EAUZmKKHtI3fgD7xj+ikR6FzVcR1ifUQDI10FI4BfjE2S5wBnIZDPZDG4hoePRtwgvGaHrLqgU3J8unAq3nAIunohEQm4NWuoorAW1kKeSIpJRtWxxYOobWvl1YnXsfzaSFadPCeNDWRI1cT6WyUIjUtGMekYRcxkYJO+F8uEGeF6KUq8NBOnnnUWyC83LxqRqIwl20aalJ+shALnY8cLFcLrdpHEKBjwYmCJAnXdQasaiPdcNppNvvxvij38D4Q8+gbH4WQRWrgehCOz1KryYhhXaVVJRBvgIhQ+nWKazv/BeYAy+hkS+gyjeE4ZNJvnf62nj2PAquAnQZMnPnNQov5aT0rDLi0IhlknkIhRkm5NAKSBhcQ14WaFKVirAElv+qSE54ekSGO5Qzs2UXAaf5WmdRzH+Acm4/kpMHUK2fRly1EVsShlHIU/yGczkXeqiLlSk+7MWE/6p/eSP3r3OVGfearZZzvpT1v+qv7UOuFW4tp7xirhGGIcpuC5HJYJsTWLfbYL/wJLY/+21g7DOwwQQMdeXlsFRtlSokLZwaCMoIdUFkO7roqocoPQkcfhntt3ciWZjDBJVobIqqoAxFKQWc/t7wM/n9g9hB6YdYtCENxE0f+j/oTlwFJeuXzrfr/cdBXVVgefIrU4KUbK3tIaw6CLqLQGsBvaP70JvZDazPI+gsIebQfaRGJOfCKNwZ4hF/Em/xpBC+q6vhMeHwykdVoUq7iIh8iJpYi+9E+MivY+rJbwGNW2FlPzi1Fznv2EisQCZkkmcYG6NmQoRFjogbP1tHMfcGkt3/gWT+EGyvjamI1KKc5HQ5KIGp/cPTM/A4etR+1HDpazGkgdAEeDvcuDqxpUzi2kPIixRE7TL8CUUjJEKlI10oWJYjJirIYHor0s9IZvciXzgMszqPqL2IsCCRcgqyzjPZKonTqSwixzJ+6bc5escVXwHfI5LN5/IEGgjHdwXImMFErEbGaG27HxOP/w6JWNkAAAAKh0lEQVTCR34DiLapXIQ77BSHrWEvGUsYkgnPcFVgzCYI8zaqEwexsfdl9A6/jrC7gmZgMRZUMJm2AoyEFi5e4witoxRVeKsfahuuETKUgXDzl1BCYBmQIdhMSqUujnfJkYArWWwT0GeAWsjFY09jDWblFHLOY8zsRrlwCM1kEXV6ExKyccEICRHuXwNbVAI3CUcGcsX3+VC/UBsT+lZP2Sr9CgcDYvVQYD0WaVZDcucvYPrpb8Pe/4R0z52ijObnAk3keJQyzBAnkXGzFy1sixJg8Qg2dv4InaPvoZGsoGEz1EPqtehYg0QXnBoUJh5HhsdQT4gOuX90fHzYmZChDIRLkYsH4c1FQh2vlSD3MVyyq6T8FkWaoRaRdbAA1o/Dzu9He5aVqRnEG6cwUbUQmB4MRWmKnmqVcHQyYHLtGklei+3ixbGhnvPoTUOuwIcKltqElcvNZEiFEQYt20R+71dx07N/gOKOR0TGj5cWsFS3ndBTCramuUVuAiRIULPrmI42YN97Cef+658Rb5zFeC0QqiHpJZLkTpogPEwJviJuTg2DHkT6Js5AVBd+Cz2IGogiYulOpU/pxmD5wVL2IgzQoHJV0YMpOP+dwJ6axdqe/0Hv5LswrSXUiw6mQibfKUr2O8IKtbGmU6sSK3MabJ7LaqvFd4bcQNf723w+LB6EX67U7mc/TYAiyxHVGujVb0b1+a9h7OnvIpvYgTKKxWPwcKWBqMoHnU2EgiKxbBgjwbhpIdw4gvUffx/Fnv/FTWxJOeZQpenxqmb8MK4yeREDEaLSrTcQngDCoqVRnjBoe+tlmVeBfg1O6SUrsCRGOHsMrbf/D/npfZjCOmocVvI3xvNEIOgM3dyAPT1SyV4Eh/RZCqQA6NZqel/v+3zo+xMD8SVUxtFO+k1+IcGCkfABkIkxb94M+8ATiJ98HsXYPSgD+gom1AQ08tWOMMKSdJq0C6z6lqBKiTm+Cyf+9W8xcWYvbpqu69y6wIS8cfDX5A7zxSE37aSLUphDfSti4hPyIB8luOir4CILYEJ0M/YwAtRk1oLGkaNGr9E6g/zk+8j3v4b85EE0kiXEpi15hl70DErAoDfmGBocKlRHcx2K8TJq2UNvhNEbL74CP81AeGxGZFgPsJiGCO99DDc/9S1Un31M5OpACQ3Sfgonl8KDhHEgNMJ0aDisFnRgTr2DszSQlQ8wHhOty4qVc18e7iKJR9+VOeCpA6CKoXh6j08gxPpoAzECPiMDSUxocU6LL4W20+RtoH0O5bk5ZLN70D62H9HqSSH1ipHAEF8gCZ1S2OsAlEKcCS2nRpBCzB0S11H8eBD6aM9+ClZA9poDfMrBdYEHIYKBhmBCdEwT5a2fx+SjzyJ48AnY8VuRG2qVkGmGb1X0rsyCSMjOAbhUSv04/DrWXvk3jHeOowaKpjoP0l8Cz5bpKrz96VNfQPB69cMZh9YgPkaX96N+xDyD/Kh5WWGMcOasixpLcr0lYGkW3UO7kZ86ALt8DLV0HXFYIWJZTgbrRehO6l9C3clhJYf9F7I6Dx2RT6dM3Cz7CRZRauSfgg1yo3+E83utrr2ncnVSVAnYIFZ0bVEbQzJ2Gxo/9yiaX/41pLc9gG64HQibEj7Td0jizYnPin2xHkx3Gdmht5AefB3psT2YtquIRG7CwX6803BRiByonphcvrcpV5WTdfhNM5SBMBQquJHLAhEVflbmYVZOIJufQXJsD8ziEdSSs4jyNkIaBokQhOuI+QRpe9QrcuOrDjdxM6qtJ3mJGJFmZCLywqKWM6LLuNcbfVtf2fvvl3ldTYpoCvleCBvWkXE2vSoQxE10qPq0/S5M/eJTCB56Etn0/bDBJPKcGh9AM6RIUwsmXYTpLgALR7G+7zXk8wdRT5YwUePYNJuCXrt9M1MAD1irjei+HTgw1xUIO4YyEILALLowOXFTK+i89zpaR/bCLM2i3jmDyTgViwfzkIoUljEq0TSMZdqYsljipKX7qq7VR5E6+eUTQK8cqOQM2kkf1Xmv7E4f5rcNeI75DBU1q406EeMxdQEXSrhUi5AVJdbKCMHtOzD5+DcRP/A4ULsFVUVZAvbQMphsCZjfj3J2N6qlObTnZ1DPW2gEqqOozTRNxAX1K4ergk4lCd9cWaOlOMifhknD3KO+Z0gD6QHtWWD5COz8CazueQPFwnFMIUEc05q7sGUqsx0sWsvMt+TfA0PQvz4giNOcxIHdHJOiLLov6dEZi/bcyECGf9xX6p0DqMl5BiKHeITC1qWpS+YYwkhsaNFLSrSDCTRu24GJux9GcPdDwPSdQDQB9FoyOl0cewfp/H7UihWUWQuNeqS9M2mxsEJFAzE6WSvRBaMOlofIgunzIocNk9c4OrvLmSi0bFFvurzn3Ew+IlpvfvaiSFDlq1j48T+gPPYuamkXQXsN2xoRYjIS9trKMBGFqEI3C15xlly0FgYyov5vuv2uybqy3UpO4st53kikhDcykCu1xS/v91xoINwtmoMIgTdnbEyEIu3AlClqk03RsyzLGtKckhHjoqS7nnN+YwxT9Rh1InOzZcTFOkxEdHcqHGUK6OOzjxx/r+6pC/vGDM+Vc8CPLVxpAxFeXlql682RJ1fyhQr1so2oWEG1eBTpgTexemAXGt0FNG1HyBF07tcLs/jqkz6CPlmCuitXbrjw8QyCRXm9WKm/WT/aeQUCysvbFaN3n7cC5yOgB2zVDgul5rJpIo4FF9Uh4WHIAk3ZJ6nWvlnI8m9/hsPvlQE9rUYd+nc/1My/yHc3o2GGfXjGlqUVMUcpsDrjcB2KPOlhMsqA1jzK43vQ3fcqkpNkQF/GmElFp290jVbgel4BMRCiZhKn/8YQX5hBbI6wfQb23FGkc3uQzb6H4twc4mwDzZBeI90k5XU9L9Ho3m7kFTCltcIiSRy+plgZot4KTOs0Vt97GeHZQ7ALswi7y2gQaykMLVSCpVmNSNVu5M1zI9y72VjdsI1GjChm8tFGtXoSnbk9SE/sReeDtzBdrGGSsxkoJHEmjr9kCY8UPJdTP7sRVnd0j9f8CpjlDw7Y7TdNwMQ57LnD2JjZhbWjb8MuH8cdcYEau5tC28kEicqu/OIsN+vfIw9yze+A0Q187AqY6shr1kzFogWe7XsNK3tfheks4KapCKazjkhmhjmTwSobNRpY7SKwNhjQS44WebQC1+kKmKN/+U0bVdTLINdUF7HtImJnUzT3PHs3VVApXMMm4CYqFaETGV2jFbh+V8Bs/MUjlgBBilZSzlhIn4Uih2hdN+PBnENIgJ1gCkMrepW+RPT1u0CjO7uxV8AUf/45cowMtL1dB0aFE32b2ykFCleP+97Wax3f2E9qdPdXZQWM/bO7nEk4IKAYgGeacF3svqKTp+IkPpm6fl4C6Kp89tEfHa3AJ74Cxv7p53T8xYVLSvbrZn69nqAMvxMoxvH6WHITYmWoCju6RitwPa+AsX98rwfRDhAuEl7pwMtAb445h5Z4peILbRaOrtEKXM8rYOwf3edSDSbeeqsem+VHYcVQ9Cd9Ixr1QK7nbTG6N78Cxv7JfecDIwd5+SAh/9AUxmVMoIzWfrQC19AK/D+zp/8x5gBcwgAAAABJRU5ErkJggg== Tire-bouchon 2 Acoustique Calculer la vitesse du son grâce au bruit du bouchon qui saute ! Temps Longueur du goulot (de la surface du vin au haut de la bouteille) Diamètre intérieur du goulot Seuil de bruit Fréquence du pic Transformée de Fourier Fréquence FFT Amp Vitesse du son Impulsion dans le temps Débogage Échantillons réels Précision de fréquence (fft) Taux audio Période Autocorrélation corrélation Auto-période Auto-fréquence limit rate rate/2 recording_subrange recording_length samples actual_samples/2 actual_samples/2+1 actual_samples+1 actual_samples subrange_start period time frequency fftX fftY halfFrequency halfFFTtempX halfFFTtempY fft f0 deltaF result out absOut length diameter speed autocorrelation autoco_t max_auto threshold count_peaks count_peaks-2 peaksX lastX period_auto frequency_auto speed_auto out absOut absOut limit out result result recording_length recording_length 4096 subrange_start result subrange_start recording_subrange recording_subrange actual_samples actual_samples 1 actual_samples+1 actual_samples 2 actual_samples/2 actual_samples/2 1 actual_samples/2+1 actual_samples rate 0.001 period 1000 period deltaF rate 2 rate/2 0 period actual_samples+1 time 0 rate/2 actual_samples/2+1 frequency recording_subrange fftX fftY frequency 1 actual_samples/2 fftX fftY halfFrequency halfFFTtempX halfFFTtempY halfFFTtempX halfFFTtempY fft halfFrequency fft f0 length diameter f0 speed time recording_subrange autocorrelation autoco_t 0 10 autocorrelation max_auto max_auto 0.5 threshold autoco_t autocorrelation threshold peaksX peaksX count_peaks count_peaks 2 count_peaks-2 count_peaks-2 1 peaksX lastX lastX count_peaks-2 period_auto 1 period_auto 0.001 frequency_auto length diameter frequency_auto speed_auto length diameter limit f0 halfFrequency fft speed time recording_subrange actual_samples deltaF rate period autoco_t autocorrelation period_auto frequency_auto speed_auto halfFrequency fft time recording_subrange autoco_t autocorrelation