

A215785


Number of permutations of 0..floor((n*71)/2) on even squares of an n X 7 array such that each row, column, diagonal and (downwards) antidiagonal of even squares is increasing.


1



1, 5, 42, 262, 2465, 15485, 146205, 918637, 8674386, 54503318, 514658321, 3233726365, 30535100957, 191859642509, 1811672635826, 11383190276278, 107488026474001, 675374034791837, 6377352953765373, 40070496565665517
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Column 7 of A215788.


LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210


FORMULA

Empirical: a(n) = 61*a(n2)  99*a(n4)  2*a(n6).
Empirical g.f.: x*(1 + 5*x  19*x^2  43*x^3 + 2*x^4  2*x^5) / (1  61*x^2 + 99*x^4 + 2*x^6).  Colin Barker, Jul 23 2018


EXAMPLE

Some solutions for n=4:
..0..x..1..x..2..x..3....0..x..1..x..3..x..4....0..x..1..x..2..x..6
..x..4..x..6..x..7..x....x..2..x..5..x..6..x....x..3..x..4..x..8..x
..5..x..8..x..9..x.12....7..x..8..x..9..x.10....5..x..7..x.10..x.12
..x.10..x.11..x.13..x....x.11..x.12..x.13..x....x..9..x.11..x.13..x


CROSSREFS

Cf. A215788.
Sequence in context: A266021 A062021 A241780 * A082145 A126765 A228793
Adjacent sequences: A215782 A215783 A215784 * A215786 A215787 A215788


KEYWORD

nonn


AUTHOR

R. H. Hardin, Aug 23 2012


STATUS

approved



